Biological Trace Element Research

, Volume 183, Issue 1, pp 164–171 | Cite as

Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region

  • José Cavalcante Souza Vieira
  • Camila Pereira Braga
  • Grasieli de Oliveira
  • Cilene do Carmo Federici Padilha
  • Paula Martin de Moraes
  • Luiz Fabricio Zara
  • Aline de Lima Leite
  • Marília Afonso Rabelo Buzalaf
  • Pedro de Magalhães Padilha
Article

Abstract

This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg−1), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg−1, respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1–4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

Keywords

Mercury in fish Biomarkers of mercury exposure Metallomics study 2D-PAGE ESI-MS/MS 

Notes

Acknowledgments

The authors thank the Brazilian research funding agency ANEEL/ESBR-P&D: 6631-0001/2012/Contract Jirau 004/2013, São Paulo State Research Foundation (Processes: 2012/24035-5, 2013/21297-1 and 2014/02668-1).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Val J, Muñiz S, Gomà J, Navarro E (2016) Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. Sci Total Environ 540:53–62. doi: 10.1016/j.scitotenv.2015.05.042 CrossRefPubMedGoogle Scholar
  2. 2.
    Ramírez-Bajo MJ, de Atauri P, Ortega F, Westerhoff HV, Gelpi JL, Centelles JJ, Cascante M (2014) Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice. PLoS One 9:e80018. doi: 10.1371/journal.pone.0080018 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28:895–907. doi: 10.1897/08-151.1 CrossRefPubMedGoogle Scholar
  4. 4.
    Nevado JJB, Martín-doimeadios RCR, Bernardo FJG, Moreno MJ, Herculano AM, Nascimento JLM, Crespo-López ME (2010) Mercury in the Tapajós River basin, Brazilian Amazon: a review. Environ Int 36:593–608. doi: 10.1016/j.envint.2010.03.011 CrossRefGoogle Scholar
  5. 5.
    Moraes PM, Santos FA, Padilha CCF, Vieira JCS, Zara LF, Padilha PM (2012) A preliminary and qualitative metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150:195–199. doi: 10.1007/s12011-012-9502-x CrossRefPubMedGoogle Scholar
  6. 6.
    Moraes PM, Santos FA, Cavecci B, Padilha CCF, Vieira JCS, Roldan PS, Padilha PM (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617. doi: 10.1016/j.foodchem.2013.05.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Braga CP, Bittarello AC, Padilha CC, Leite AL, Moraes PM, Buzalaf MA, Zara LF, Padilha PM (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244. doi: 10.1016/j.talanta.2014.09.021 CrossRefPubMedGoogle Scholar
  8. 8.
    Bastos WR, Dórea JG, Bernardi JVE, Lauthartte LC, Mussy MH, Hauser M, Dória CRC, Malm O (2015) Mercury in muscle and brain of catfish from the Madeira River, Amazon, Brazil. Ecotoxicol Environ Saf 118:90–97. doi: 10.1016/j.ecoenv.2015.04.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Ceccatto APS, Testoni MC, Ignácio ARA, Santos-Filho M, Malm M, Díez S (2015) Mercury distribution in organs of fish species and the associated risk in traditional subsistence villagers of the Pantanal wetland. Environ Geochem Health. doi: 10.1007/s10653-015-9754-4
  10. 10.
    Walters DM, Rosi-Marshall E, Kennedy TA, Cross WF, Baxter CV (2015) Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environ Toxicol Chem 34:2385–2394. doi: 10.1002/etc.3077 CrossRefPubMedGoogle Scholar
  11. 11.
    Borrell A, Tornero V, Bhattacharjee D, Aguilar A (2015) Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci Total Environ 545–546:414–423. doi: 10.1016/j.scitotenv.2015.12.046 PubMedGoogle Scholar
  12. 12.
    Amoli JS, Barin A, Ebrahimi-Rad M, Sadighara P (2011) Cell damage through pentose phosphate pathway in fetus fibroblast cells exposed to methyl mercury. J Appl Toxicol 31:685–689. doi: 10.1002/jat.1628 CrossRefPubMedGoogle Scholar
  13. 13.
    Belyaeva EA, Korotkov SM, Saris NE (2011) In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: a comparison of copper and mercury with cadmium. J Trace Elem Med Biol 25:S63–S73. doi: 10.1016/j.jtemb.2010.10.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Bełdowska M, Falkowska L (2016) Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the southern Baltic. Water Air Soil Pollut 227:52. doi: 10.1007/s11270-015-2735-5 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dorea JG (2003) Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations? Environ Res 92:232–244. doi: 10.1016/S0013-9351(02)00092-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Dos Santos FA, Cavecci B, Vieira JCS, Franzini VP, Santos A, Leite AL, Buzalaf MA, Zara LF, Padilha PM (2015) A metalloproteomics study on the association of mercury with breast milk in samples from lactating women in the Amazon region of Brazil. Arch Environ Contam Toxicol 69:223–229. doi: 10.1007/s00244-015-0161-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CC, Leite AL, Figueiredo WS, Buzalaf MA, Zara LF, Padilha PM (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69:422–430. doi: 10.1007/s00244-015-0160-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Lima PM, Neves RDCF, Dos Santos FA, Pérez CA, Silva MO, Arruda MA, Castro GR, Padilha PM (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta 82:1052–1056. doi: 10.1016/j.talanta.2010.06.023 CrossRefPubMedGoogle Scholar
  19. 19.
    Silva A, Neves RCF, Quintero-pinto LG, Padilha CCF (2007) Determination of selenium by GFAAS in slurries of fish feces to estimate the bioavailability of this micronutrient in feed used in pisciculture. Chemosphere 68:1542–1547. doi: 10.1016/j.chemosphere.2007.03.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Hauser-Davis RA, Bastos FF, Tuton B, Chávez Rocha R, Saint Pierre T, Ziolli RL, Arruda MA (2014) Bile and liver metallothionein behavior in copper-exposed fish. J Trace Elem Med Biol 28:70–74. doi: 10.1016/j.jtemb.2013.09.003 CrossRefPubMedGoogle Scholar
  21. 21.
    Tomas M, Tinti A, Bofill R, Capdevilla M, Atrian S, Torreggiani A (2016) Comparative Raman study of four plant metallothionein isoforms: insights into their Zn(II) clusters and protein conformations. J Inorg Biochem 156:55–63. doi: 10.1016/j.jinorgbio.2015.12.027 CrossRefPubMedGoogle Scholar
  22. 22.
    González-Estecha M, Bodas-Pinedo A, Guillén-Pérez JJ et al (2014) Methylmercury exposure in the general population; toxicokinetics; differences by gender, nutritional and genetic factors. Nutr Hosp 30:969–988. doi: 10.3305/nh.2014.30.5.7727 PubMedGoogle Scholar
  23. 23.
    Pedrero Zayas Z, Ouerdane L, Mounicou S, Lobinski R, Monperrus M, Amouroux D (2014) Hemoglobin as a major binding protein for methylmercury in white-sided dolphin liver. Anal Bioanal Chem 406:1121–1129. doi: 10.1007/s00216-013-7274-6 CrossRefGoogle Scholar
  24. 24.
    Park S, Lee B-K (2013) Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean adult population (KNHANES 2008-2010). Biol Trace Elem Res 151:315–323. doi: 10.1007/s12011-012-9566-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim BM, Choi AL, Ha EH, Pedersen L, Nielsen F, Weihe P, Hong YC, Jorgensen EB, Grandjean P (2014) Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood. Environ Res 132:407–412. doi: 10.1016/j.envres.2014.04.030 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Elkins KM, Gatzeva-Topalova PZ, Nelson DJ (2001) Molecular dynamics study of Ca(2+) binding loop variants of parvalbumin with modifications at the “gateway” position. Protein Eng 14:115–126CrossRefPubMedGoogle Scholar
  27. 27.
    Chudinova TV, Belekhova MG, Tostivint H, Ward H, Rio JP, Kenigfest NB (2012) Differences in parvalbumin and calbindin chemospecificity in the centers of the turtle ascending auditory pathway revealed by double immunofluorescence labeling. Brain Res 1473:87–103. doi: 10.1016/j.brainres.2012.07.022 CrossRefPubMedGoogle Scholar
  28. 28.
    UniProt (2007) http://www.uniprot.org/uniprot/P68200. Accessed 16 Aug 2017
  29. 29.
    Karsi A, Patterson A, Feng J, Liu Z (2002) Translational machinery of channel catfish: I. A transcriptomic approach to the analysis of 32 40S ribosomal protein genes and their expression. Gene 291:177–186. doi: 10.1016/S0378-1119(02)00595-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Paula MT, Zemolin AP, Vargas AP, Golombieski RM, Loreto EL, Saidelles AP, Picoloto RS, Flores EM, Pereira AB, Rocha JB, Merritt TJ, Franco JL, Posser T (2014) Effects of Hg(II) exposure on MAPK phosphorylation and antioxidant system in D. melanogaster. Environ Toxicol 29:621–630. doi: 10.1002/tox.21788 CrossRefPubMedGoogle Scholar
  31. 31.
    Marshall JL, Booth JE, Williams JW (1984) Characterization of the covalent mercury (II)-NADPH complex. J Biol Chem 259:3033–3036PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • José Cavalcante Souza Vieira
    • 1
  • Camila Pereira Braga
    • 1
  • Grasieli de Oliveira
    • 1
  • Cilene do Carmo Federici Padilha
    • 1
  • Paula Martin de Moraes
    • 1
  • Luiz Fabricio Zara
    • 2
  • Aline de Lima Leite
    • 3
  • Marília Afonso Rabelo Buzalaf
    • 3
  • Pedro de Magalhães Padilha
    • 1
  1. 1.Institute of Bioscience of BotucatuSão Paulo State University (UNESP)BotucatuBrazil
  2. 2.Pontifical Catholic University of Goiás (PUC)GoiâniaBrazil
  3. 3.Bauru Dental SchoolUniversity of São Paulo-USPBauruBrazil

Personalised recommendations