Advertisement

Biological Trace Element Research

, Volume 182, Issue 2, pp 303–308 | Cite as

Essential Elements as Biomarkers of Acute Kidney Injury and Spontaneous Reversion

  • Regiane Marinho da Silva
  • Gui Mi Ko
  • Rinaldo Florêncio Silva
  • Ludmila Cabreira Vieira
  • Rafael Vicente de Paula
  • Júlio Takehiro Marumo
  • Amanda Ikegami
  • Maria Helena Bellini
Article

Abstract

Acute kidney injury (AKI) is an important health problem and can be caused by number of factors. The use of aminoglycosides, such as gentamicin, is one of these factors. Recently, an effort has been made to find biomarkers to guide treatment protocols. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to estimate the contents of Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn in serum and urine of the healthy, AKI, and spontaneous recovery (SR) groups of animals. The animal model of AKI and SR was validated by measuring serum and urinary urea and creatinine. The quantitative determination of the elements showed a decrease in serum levels of Ca, and Fe in the AKI group (P<0.01 vs. healthy), with a return to normal levels in the SR group, without a significant difference between the healthy and SR groups. In the urine samples, there was a decrease in P and Na levels in the AKI group (P<0.001 and P<0.01 vs. healthy), but Ca levels were increased in this group compared with the healthy and SR groups (P<0.01). These findings indicate that mineral elements might be useful as biomarkers for AKI.

Keywords

Essential elements Acute kidney injury ICP-OES Gentamicin 

Notes

Acknowledgements

This study was supported by FAPESP 2014/19265-7.

Compliance with Ethical Standards

All procedures were performed according to the recommendations of the Research Ethics Committee of UNIFESP/SP (Project No. 9287290915/CEUA). Moreover, this committee oversaw all experimental animal procedures.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Cerdá J, Liu KD, Cruz DN, Jaber BL, Koyner JL, Heung M, Okusa MD, Faubel S (2015) Promoting kidney function recovery in patients with AKI requiring RRT. Clin J Am Soc Nephrol 11:1859–1867. doi: 10.2215/CJN.01170215 CrossRefGoogle Scholar
  2. 2.
    Oliveira FP, Cipullo JP, Burdmann EA (2006) Nefrotoxicidade dos aminoglicosídeos. Braz J Cardiovasc Surg 21:444–452. doi: 10.1590/S0102-7638200600040001 CrossRefGoogle Scholar
  3. 3.
    Fiaccadori E, Regolisti G, Cabassi A (2010) Specific nutritional problems in acute kidney injury, treated with non-dialysis and dialytic modalities. NDT Plus 3(1):1–7. doi: 10.1093/ndtplus/sfp017
  4. 4.
    Calvo FB, Junior DS, Rodrigues CJ, Krug FJ, Marumo JT, Schor N, Bellini MH (2009) Variation in the distribution of trace elements in renal cell carcinoma. Biol Trace Elem Res 130:107. doi: 10.1007/s12011-009-8325-x CrossRefPubMedGoogle Scholar
  5. 5.
    Parsons PJ, Barbosa F (2007) Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim Acta Part B At Spectrosc 62:992–1003. doi: 10.1016/j.sab.2007.03.007 CrossRefGoogle Scholar
  6. 6.
    Muñiz CS, Martin JLF, Marchante-Gayón JM, Alonso JIG, Cannata-Andía JB, Sanz-Medel A (2001) Reference values for trace and ultratrace elements in human serum determined by double-focusing ICP-MS. Biol Trace Elem Res 82:259–272. doi: 10.1385/BTER:82:1-3:259 CrossRefPubMedGoogle Scholar
  7. 7.
    Edelstein CL (2008) Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 15:222–234. doi: 10.1053/j.ackd.2008.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Doi K, Leelahavanichkul A, Yuen PS, Star RA (2009) Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 119:2868–2878. doi: 10.1172/JCI39421 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Singh AP, Muthuraman A, Jaggi AS, Singh N, Grover K, Dhawan R (2012) Animal models of acute renal failure. Pharmacol Rep 64:31–44. doi: 10.1016/S1734-1140(12)70728-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. doi: 10.1097/COH.0b013e32833ed177 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vaidya VS, Ferguson MA, Bonventre JV (2008) Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 48:463–493. doi: 10.1146/annurev.pharmtox.48.113006.094615 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Acharya CR, Thakar HN, Vajpeyee SK (2013) A study of oxidative stress in gentamicin induced nephrotoxicity and effect of antioxidant vitamin C in Wistar rats. Natl J Physiol Pharm Pharmacol 3:14–20. doi: 10.5455/njppp.2013.3.14-20 CrossRefGoogle Scholar
  13. 13.
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. doi: 10.1016/B978-0-12-394309-5.00006-7 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schaalan MF, Mohamed WA (2016) Determinants of hepcidin levels in sepsis-associated acute kidney injury: impact on pAKT/PTEN pathways? J Immunotoxicol 13:751–757. doi: 10.1080/1547691X.2016.1183733 CrossRefPubMedGoogle Scholar
  15. 15.
    Blaine J, Chonchol M, Levi M (2014) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. doi: 10.2215/CJN.09750913
  16. 16.
    Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353. doi: 10.1002/cphy.c110041

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Regiane Marinho da Silva
    • 1
  • Gui Mi Ko
    • 1
  • Rinaldo Florêncio Silva
    • 1
  • Ludmila Cabreira Vieira
    • 2
  • Rafael Vicente de Paula
    • 3
  • Júlio Takehiro Marumo
    • 2
  • Amanda Ikegami
    • 2
  • Maria Helena Bellini
    • 2
  1. 1.Federal University of São PauloSão PauloBrazil
  2. 2.Nuclear and Energy Research InstituteSão PauloBrazil
  3. 3.Itatijuca BiotechSão PauloBrazil

Personalised recommendations