Advertisement

Biological Trace Element Research

, Volume 182, Issue 1, pp 1–13 | Cite as

Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity

  • Mohammad Tariqur RahmanEmail author
  • Muhammad Manjurul Karim
Article

Abstract

Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a “delicate” balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)—a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.

Keywords

Inflammation Glucocorticoid hormone Metallothionein Metalloproteases Nutritional immunity Zinc toxicity 

References

  1. 1.
    Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. doi: 10.1038/nrmicro2836 PubMedCrossRefGoogle Scholar
  2. 2.
    Andreini C, Bertini I, Cavallaro G et al (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218. doi: 10.1007/s00775-008-0404-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178. doi: 10.1021/pr0603699 PubMedCrossRefGoogle Scholar
  4. 4.
    Fischer Walker C, Black RE (2004) Zinc and the risk for infectious disease. Annu Rev Nutr 24:255–275. doi: 10.1146/annurev.nutr.23.011702.073054 PubMedCrossRefGoogle Scholar
  5. 5.
    Kulkarni H, Mamtani M, Patel A (2012) Roles of zinc in the pathophysiology of acute diarrhea. Curr Infect Dis Rep 14:24–32. doi: 10.1007/s11908-011-0222-8 PubMedCrossRefGoogle Scholar
  6. 6.
    Jarosz M, Olbert M, Wyszogrodzka G et al (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling Inflammopharmacology 25:11–24. doi: 10.1007/s10787-017-0309-4 PubMedGoogle Scholar
  7. 7.
    Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447S–463SPubMedCrossRefGoogle Scholar
  8. 8.
    Corbett D, Wang J, Schuler S et al (2012) Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect Immun 80:14–21. doi: 10.1128/IAI.05904-11 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ong CY, Gillen CM, Barnett TC et al (2014) An antimicrobial role for zinc in innate immune defense against group A streptococcus. J Infect Dis 209:1500–1508. doi: 10.1093/infdis/jiu053 PubMedCrossRefGoogle Scholar
  10. 10.
    Capdevila DA, Wang J, Giedroc DP (2016) Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. J Biol Chem 291:20858–20868. doi: 10.1074/jbc.R116.742023 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(Suppl 1):35–39. doi: 10.1016/j.jtemb.2007.09.011 PubMedCrossRefGoogle Scholar
  12. 12.
    Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-grand) 46:451–463Google Scholar
  13. 13.
    Rigby Duncan KE, Stillman MJ (2006) Metal-dependent protein folding: metallation of metallothionein. J Inorg Biochem 100:2101–2107. doi: 10.1016/j.jinorgbio.2006.09.005 PubMedCrossRefGoogle Scholar
  14. 14.
    Vasak M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17. doi: 10.1016/j.jtemb.2005.03.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Chang X, Jin T, Chen L et al (2009) Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure. Exp Biol Med (Maywood) 234:666–672. doi: 10.3181/0811-RM-336 CrossRefGoogle Scholar
  16. 16.
    Karin M, Herschman HR (1980) Glucocorticoid hormone receptor mediated induction of metallothionein synthesis in HeLa cells. J Cell Physiol 103:35–40. doi: 10.1002/jcp.1041030106 PubMedCrossRefGoogle Scholar
  17. 17.
    Karin M, Imbra RJ, Heguy A, Wong G (1985) Interleukin 1 regulates human metallothionein gene expression. Mol Cell Biol 5:2866–2869PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nourani MR, Ebrahimi M, Roudkenar MH et al (2011) Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. Int J Gen Med 4:413–419. doi: 10.2147/IJGM.S17916 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Phillippi JA, Klyachko EA, Kenny JP 4th et al (2009) Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation 119:2498–2506. doi: 10.1161/CIRCULATIONAHA.108.770776 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yamada H, Koizumi S (1991) Metallothionein induction in human peripheral blood lymphocytes by heavy metals. Chem Biol Interact 78:347–354PubMedCrossRefGoogle Scholar
  21. 21.
    Boonprasert K, Ruengweerayut R, Aunpad R et al (2012) Expression of metallothionein isoforms in peripheral blood leukocytes from Thai population residing in cadmium-contaminated areas. Environ Toxicol Pharmacol 34:935–940. doi: 10.1016/j.etap.2012.08.002 PubMedCrossRefGoogle Scholar
  22. 22.
    Khan Z, Nisar MA, Hussain SZ et al (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99:10745–10757. doi: 10.1007/s00253-015-6901-x PubMedCrossRefGoogle Scholar
  23. 23.
    Khan Z, Rehman A, Hussain SZ et al (2016) Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express 6:54. doi: 10.1186/s13568-016-0225-9 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sharma J, Shamim K, Dubey SK, Meena RM (2017) Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Sci Total Environ 579:359–365. doi: 10.1016/j.scitotenv.2016.11.089 PubMedCrossRefGoogle Scholar
  25. 25.
    Rowland JL, Niederweis M (2012) Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 92:202–210. doi: 10.1016/j.tube.2011.12.006 CrossRefGoogle Scholar
  26. 26.
    Calesnick B, Dinan AM (1988) Zinc deficiency and zinc toxicity. Am Fam Physician 37:267–270PubMedGoogle Scholar
  27. 27.
    Tipton IH, Schroeder HA, Perry HMJ, Cook MJ (1965) Trace elements in human tissue. 3. Subjects from Africa, the Near and Far East and Europe. Health Phys 11:403–451PubMedCrossRefGoogle Scholar
  28. 28.
    Karcioglu ZA (1982) Zinc in the eye. Surv Ophthalmol 27:114–122PubMedCrossRefGoogle Scholar
  29. 29.
    Karcioglu ZA, Stout R, Hahn HJ (1984) Serum zinc levels in retinitis pigmentosa. Curr Eye Res 3:1043–1048PubMedCrossRefGoogle Scholar
  30. 30.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedCrossRefGoogle Scholar
  31. 31.
    Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4:676–694. doi: 10.3390/nu4070676 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cousins RJ, Dunn MA, Leinart AS et al (1986) Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Am J Phys 251:E688–E694Google Scholar
  33. 33.
    Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201. doi: 10.1021/pr050361j PubMedCrossRefGoogle Scholar
  34. 34.
    Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. doi: 10.1146/annurev-nutr-033009-083312 PubMedCrossRefGoogle Scholar
  35. 35.
    Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089. doi: 10.1074/jbc.R600011200 PubMedCrossRefGoogle Scholar
  36. 36.
    Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649PubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463. doi: 10.1074/jbc.M412188200 PubMedCrossRefGoogle Scholar
  38. 38.
    Wang F, Kim B-E, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441. doi: 10.1074/jbc.M408361200 PubMedCrossRefGoogle Scholar
  39. 39.
    Dufner-Beattie J, Kuo Y-M, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090. doi: 10.1074/jbc.M409962200 PubMedCrossRefGoogle Scholar
  40. 40.
    Liuzzi JP, Lichten LA, Rivera S et al (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102:6843–6848. doi: 10.1073/pnas.0502257102 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hasan R, Rink L, Haase H (2016) Chelation of free Zn(2)(+) impairs chemotaxis, phagocytosis, oxidative burst, degranulation, and cytokine production by neutrophil granulocytes. Biol Trace Elem Res 171:79–88. doi: 10.1007/s12011-015-0515-0 PubMedCrossRefGoogle Scholar
  42. 42.
    Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357. doi: 10.2119/2008-00033.Prasad PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285. doi: 10.1016/j.autrev.2014.11.008 PubMedCrossRefGoogle Scholar
  44. 44.
    Haase H, Rink L (2014) Zinc signals and immune function. Biofactors 40:27–40. doi: 10.1002/biof.1114 PubMedCrossRefGoogle Scholar
  45. 45.
    Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. doi: 10.1101/cshperspect.a001651 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26:253–266. doi: 10.1016/j.smim.2014.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liu M-J, Bao S, Galvez-Peralta M et al (2013) ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep 3:386–400. doi: 10.1016/j.celrep.2013.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Galvez-Peralta M, Wang Z, Bao S et al (2014) Tissue-specific induction of mouse ZIP8 and ZIP14 divalent cation/bicarbonate symporters by, and cytokine response to, inflammatory signals. Int J Toxicol 33:246–258. doi: 10.1177/1091581814529310 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Talukder P, Satho T, Irie K et al (2011) Trace metal zinc stimulates secretion of antimicrobial peptide LL-37 from Caco-2 cells through ERK and p38 MAP kinase. Int Immunopharmacol 11:141–144. doi: 10.1016/j.intimp.2010.10.010 PubMedCrossRefGoogle Scholar
  50. 50.
    Gordon YJ, Huang LC, Romanowski EG et al (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394. doi: 10.1080/02713680590934111 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang M, Liu L-H, Wang S et al (2007) Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J Immunol 178:3116–3125PubMedCrossRefGoogle Scholar
  52. 52.
    Beck FW, Kaplan J, Fine N et al (1997) Decreased expression of CD73 (ecto-5′-nucleotidase) in the CD8+ subset is associated with zinc deficiency in human patients. J Lab Clin Med 130:147–156PubMedCrossRefGoogle Scholar
  53. 53.
    Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275. doi: 10.1086/315810 PubMedCrossRefGoogle Scholar
  54. 54.
    Powanda MC, Cockerell GL, Pekarek RS (1973) Amino acid and zinc movement in relation to protein synthesis early in inflammation. Am J Phys 225:399–401Google Scholar
  55. 55.
    Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9. doi: 10.1186/1742-4933-6-9 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sazawal S, Black RE, Bhan MK et al (1995) Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 333:839–844. doi: 10.1056/NEJM199509283331304 PubMedCrossRefGoogle Scholar
  57. 57.
    Sazawal S, Black RE, Jalla S et al (1998) Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatrics 102:1–5PubMedCrossRefGoogle Scholar
  58. 58.
    Prasad AS, Beck FW, Kaplan J et al (1999) Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD). Am J Hematol 61:194–202PubMedCrossRefGoogle Scholar
  59. 59.
    Prasad AS, Beck FWJ, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844PubMedGoogle Scholar
  60. 60.
    Celli J, Zahrt TC (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 3:1–14. doi: 10.1101/cshperspect.a010314 CrossRefGoogle Scholar
  61. 61.
    Coghlan LG, Carlomagno MA, McMurray DN (1988) Effect of protein and zinc deficiencies on vaccine efficacy in guinea pigs following pulmonary infection with Listeria. Med Microbiol Immunol 177:255–263PubMedCrossRefGoogle Scholar
  62. 62.
    Kidd MT, Qureshi MA, Ferket PR, Thomas LN (1994) Dietary zinc-methionine enhances mononuclear-phagocytic function in young turkeys. Zinc-methionine, immunity, and Salmonella. Biol Trace Elem Res 42:217–229PubMedCrossRefGoogle Scholar
  63. 63.
    McMurray DN, Bartow RA, Mintzer CL, Hernandez-Frontera E (1990) Micronutrient status and immune function in tuberculosis. Ann N Y Acad Sci 587:59–69PubMedCrossRefGoogle Scholar
  64. 64.
    Chang AK, Kim HY, Park JE et al (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187:6909–6916. doi: 10.1128/JB.187.20.6909-6916.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kooi C, Subsin B, Chen R et al (2006) Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 74:4083–4093. doi: 10.1128/IAI.00297-06 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Grimwood BG, Plummer THJ, Tarentino AL (1994) Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum. Arch Biochem Biophys 311:127–132. doi: 10.1006/abbi.1994.1217 PubMedCrossRefGoogle Scholar
  67. 67.
    Tarentino AL, Quinones G, Grimwood BG et al (1995) Molecular cloning and sequence analysis of flavastacin: an O-glycosylated prokaryotic zinc metalloendopeptidase. Arch Biochem Biophys 319:281–285. doi: 10.1006/abbi.1995.1293 PubMedCrossRefGoogle Scholar
  68. 68.
    Miyoshi N, Shimizu C, Miyoshi S, Shinoda S (1987) Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol 31:13–25PubMedCrossRefGoogle Scholar
  69. 69.
    Elgaml A, Miyoshi S-I (2017) Regulation systems of protease and hemolysin production in Vibrio vulnificus. Microbiol Immunol 61:1–11. doi: 10.1111/1348-0421.12465 PubMedCrossRefGoogle Scholar
  70. 70.
    Jin F, Matsushita O, Katayama S et al (1996) Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64:230–237PubMedPubMedCentralGoogle Scholar
  71. 71.
    Morihara K (1964) Production of elastase and proteinase by Pseudomonas aeruginosa. J Bacteriol 88:745–757PubMedPubMedCentralGoogle Scholar
  72. 72.
    Heck LW, Alarcon PG, Kulhavy RM et al (1990) Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144:2253–2257PubMedGoogle Scholar
  73. 73.
    Myers LL, Firehammer BD, Shoop DS, Border MM (1984) Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun 44:241–244PubMedPubMedCentralGoogle Scholar
  74. 74.
    Moncrief JS, Obiso RJ, Barroso LA et al (1995) The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun 63:175–181PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wu S, Lim KC, Huang J et al (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 95:14979–14984PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Plaut AG, Genco RJ, Tomasi TBJ (1974) Isolation of an enzyme from Streptococcus sanguis which specifically cleaves IgA. J Immunol 113:589–591PubMedGoogle Scholar
  77. 77.
    Molla A, Matsumoto K, Oyamada I et al (1986) Degradation of protease inhibitors, immunoglobulins, and other serum proteins by Serratia protease and its toxicity to fibroblast in culture. Infect Immun 53:522–529PubMedPubMedCentralGoogle Scholar
  78. 78.
    Kerr MA, Loomes LM, Senior BW (1995) Cleavage of IgG and IgA in vitro and in vivo by the urinary tract pathogen Proteus mirabilis. Adv Exp Med Biol 371A:609–611PubMedCrossRefGoogle Scholar
  79. 79.
    Loomes LM, Kerr MA, Senior BW (1993) The cleavage of immunoglobulin G in vitro and in vivo by a proteinase secreted by the urinary tract pathogen Proteus mirabilis. J Med Microbiol 39:225–232. doi: 10.1099/00222615-39-3-225 PubMedCrossRefGoogle Scholar
  80. 80.
    Brezski RJ, Jordan RE (2010) Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs 2:212–220PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Warfel JM, Steele AD, D’Agnillo F (2005) Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 166:1871–1881. doi: 10.1016/S0002-9440(10)62496-0 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Smith H, Stanley JL (1962) Purification of the third factor of anthrax toxin. J Gen Microbiol 29:517–521. doi: 10.1099/00221287-29-3-517 PubMedCrossRefGoogle Scholar
  83. 83.
    Leppla SH, Arora N, Varughese M (1999) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 87:284Google Scholar
  84. 84.
    Smith H (2002) Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo. Int J Med Microbiol 291:411–417PubMedCrossRefGoogle Scholar
  85. 85.
    Kastrup CJ, Boedicker JQ, Pomerantsev AP et al (2008) Spatial localization of bacteria controls coagulation of human blood by “quorum acting”. Nat Chem Biol 4:742–750PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mintz CS, Miller RD, Gutgsell NS, Malek T (1993) Legionella pneumophila protease inactivates interleukin-2 and cleaves CD4 on human T cells. Infect Immun 61:3416–3421PubMedPubMedCentralGoogle Scholar
  87. 87.
    Chung M-C, Popova TG, Millis BA et al (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 281:31408–31418. doi: 10.1074/jbc.M605526200 PubMedCrossRefGoogle Scholar
  88. 88.
    Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088PubMedCrossRefGoogle Scholar
  89. 89.
    Ruttkay-Nedecky B, Nejdl L, Gumulec J et al (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066. doi: 10.3390/ijms14036044 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Selvaraj A, Balamurugan K, Yepiskoposyan H et al (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896. doi: 10.1101/gad.1301805 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Olafson RW, Abel K, Sim RG (1979) Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun 89:36–43PubMedCrossRefGoogle Scholar
  92. 92.
    Westin G, Schaffner W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7:3763–3770PubMedPubMedCentralGoogle Scholar
  93. 93.
    Palmiter RD (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A 91:1219–1223. doi: 10.1073/pnas.91.4.1219 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Guo L, Lichten LA, Ryu M-S et al (2010) STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci U S A 107:2818–2823. doi: 10.1073/pnas.0914941107 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chang X-L, Jin T-Y, Zhou Y-F (2006) Metallothionein 1 isoform gene expression induced by cadmium in human peripheral blood lymphocytes. Biomed Environ Sci 19:104–109PubMedGoogle Scholar
  96. 96.
    Jonai H, Yamada H, Suzuki K et al (1992) Estimation of metallothionein synthesis in cadmium-exposed human lymphocytes by gel electrophoresis and silver staining. Ind Health 30:129–137PubMedCrossRefGoogle Scholar
  97. 97.
    Smirnova IV, Bittel DC, Ravindra R et al (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275:9377–9384PubMedCrossRefGoogle Scholar
  98. 98.
    Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830. doi: 10.1038/nature08300 PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang B, Georgiev O, Hagmann M et al (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226PubMedCrossRefGoogle Scholar
  101. 101.
    Kelly EJ, Sandgren EP, Brinster RL, Palmiter RD (1997) A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proc Natl Acad Sci U S A 94:10045–10050PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Quaife C, Hammer RE, Mottet NK, Palmiter RD (1986) Glucocorticoid regulation of metallothionein during murine development. Dev Biol 118:549–555PubMedCrossRefGoogle Scholar
  103. 103.
    Dalton T, Palmiter RD, Andrews GK (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res 22:5016–5023PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130:1455S–1458SPubMedCrossRefGoogle Scholar
  105. 105.
    Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647PubMedCrossRefGoogle Scholar
  106. 106.
    Moffatt P, Denizeau F (1997) Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29:261–307PubMedCrossRefGoogle Scholar
  107. 107.
    Garrett SH, Sens MA, Todd JH et al (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214PubMedCrossRefGoogle Scholar
  108. 108.
    Moffatt P, Seguin C (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol 17:501–510. doi: 10.1089/dna.1998.17.501 PubMedCrossRefGoogle Scholar
  109. 109.
    Neal JW, Singhrao SK, Jasani B, Newman GR (1996) Immunocytochemically detectable metallothionein is expressed by astrocytes in the ischaemic human brain. Neuropathol Appl Neurobiol 22:243–247PubMedCrossRefGoogle Scholar
  110. 110.
    Suzuki K, Nakajima K, Otaki N, Kimura M (1994) Metallothionein in developing human brain. Biol Signals 3:188–192PubMedCrossRefGoogle Scholar
  111. 111.
    Werynska B, Pula B, Muszczynska-Bernhard B et al (2013) Expression of metallothionein-III in patients with non-small cell lung cancer. Anticancer Res 33:965–974PubMedGoogle Scholar
  112. 112.
    Quaife CJ, Findley SD, Erickson JC et al (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259PubMedCrossRefGoogle Scholar
  113. 113.
    Mao J, Yu H, Wang C et al (2012) Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33:2568–2577. doi: 10.1093/carcin/bgs287 PubMedCrossRefGoogle Scholar
  114. 114.
    Moleirinho A, Carneiro J, Matthiesen R et al (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 6:e18487. doi: 10.1371/journal.pone.0018487 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11PubMedPubMedCentralGoogle Scholar
  117. 117.
    Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187PubMedCrossRefGoogle Scholar
  118. 118.
    Shi J, Lindsay WP, Huckle JW et al (1992) Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal-binding properties of the expressed protein. FEBS Lett 303:159–163PubMedCrossRefGoogle Scholar
  119. 119.
    Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:1011–1024. doi: 10.1007/s00775-011-0790-y PubMedCrossRefGoogle Scholar
  120. 120.
    Gold B, Deng H, Bryk R et al (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616. doi: 10.1038/nchembio.109 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Blindauer CA, Harrison MD, Parkinson JA et al (2001) A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc Natl Acad Sci U S A 98:9593–9598. doi: 10.1073/pnas.171120098 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Oz G, Pountney DL, Armitage IM (1998) NMR spectroscopic studies of I = 1/2 metal ions in biological systems. Biochem Cell Biol 76:223–234PubMedCrossRefGoogle Scholar
  123. 123.
    Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183–213PubMedCrossRefGoogle Scholar
  124. 124.
    Glaser R, Harder J, Lange H et al (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64. doi: 10.1038/ni1142 PubMedCrossRefGoogle Scholar
  125. 125.
    Moroz OV, Antson AA, Grist SJ et al (2003) Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta Crystallogr D Biol Crystallogr 59:859–867PubMedCrossRefGoogle Scholar
  126. 126.
    Moroz OV, Burkitt W, Wittkowski H et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11. doi: 10.1186/1471-2091-10-11 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Corbin BD, Seeley EH, Raab A et al (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–965. doi: 10.1126/science.1152449 PubMedCrossRefGoogle Scholar
  128. 128.
    McCormick A, Heesemann L, Wagener J et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936. doi: 10.1016/j.micinf.2010.06.009 PubMedCrossRefGoogle Scholar
  129. 129.
    Urban CF, Ermert D, Schmid M et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639. doi: 10.1371/journal.ppat.1000639 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hsu K, Champaiboon C, Guenther BD et al (2009) Anti-infective protective properties of S100 calgranulins. Antiinflamm Antiallergy Agents Med Chem 8:290–305PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ammendola S, Pasquali P, Pistoia C et al (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75:5867–5876. doi: 10.1128/IAI.00559-07 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Campoy S, Jara M, Busquets N et al (2002) Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 70:4721–4725PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Davis LM, Kakuda T, DiRita VJ (2009) A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191:1631–1640. doi: 10.1128/JB.01394-08 PubMedCrossRefGoogle Scholar
  134. 134.
    Rosadini CV, Gawronski JD, Raimunda D et al (2011) A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. Infect Immun 79:3366–3376. doi: 10.1128/IAI.05135-11 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kehl-Fie TE, Chitayat S, Hood MI et al (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–164. doi: 10.1016/j.chom.2011.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Nisapakultorn K, Ross KF, Herzberg MC (2001) Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun 69:4242–4247. doi: 10.1128/IAI.69.7.4242-4247.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Stork M, Grijpstra J, Bos MP et al (2013) Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog 9:e1003733. doi: 10.1371/journal.ppat.1003733 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gaetke LM, McClain CJ, Talwalkar RT, Shedlofsky SI (1997) Effects of endotoxin on zinc metabolism in human volunteers. Am J Phys 272:E952–E956Google Scholar
  139. 139.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454. doi: 10.1056/NEJM199902113400607 PubMedCrossRefGoogle Scholar
  140. 140.
    Zitka O, Kukacka J, Krizkova S et al (2010) Matrix metalloproteinases. Curr Med Chem 17:3751–3768PubMedCrossRefGoogle Scholar
  141. 141.
    Elkington PTG, O’Kane CM, Friedland JS (2005) The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 142:12–20. doi: 10.1111/j.1365-2249.2005.02840.x PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Phys 251:R398–R408Google Scholar
  143. 143.
    Wang Y, Tang JW, Ma WQ et al (2010) Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem Res 133:325–334. doi: 10.1007/s12011-009-8437-3 PubMedCrossRefGoogle Scholar
  144. 144.
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. doi: 10.3390/ijerph7041342 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Fukada T, Yamasaki S, Nishida K et al (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134. doi: 10.1007/s00775-011-0797-4 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Folin M, Contiero E, Vaselli GM (1994) Zinc content of normal human serum and its correlation with some hematic parameters. Biometals 7:75–79PubMedCrossRefGoogle Scholar
  147. 147.
    Foote JW, Delves HT (1984) Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol 37:1050–1054PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Prasad AS, Oberleas D (1974) Thymidine kinase activity and incorporation of thymidine into DNA in zinc-deficient tissue. J Lab Clin Med 83:634–639PubMedGoogle Scholar
  149. 149.
    Osman D, Cavet JS (2011) Metal sensing in Salmonella: implications for pathogenesis. Adv Microb Physiol 58:175–232. doi: 10.1016/B978-0-12-381043-4.00005-2 PubMedCrossRefGoogle Scholar
  150. 150.
    Desrosiers DC, Bearden SW, Mier IJ et al (2010) Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 78:5163–5177. doi: 10.1128/IAI.00732-10 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681. doi: 10.1021/cr900077w PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210PubMedCrossRefGoogle Scholar
  153. 153.
    Hantke K (2001) Bacterial zinc transporters and regulators. Biometals 14:239–249PubMedCrossRefGoogle Scholar
  154. 154.
    Botella H, Peyron P, Levillain F et al (2011) Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–259. doi: 10.1016/j.chom.2011.08.006 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Choudhuri S, McKim JMJ, Klaassen CD (1992) Role of hepatic lysosomes in the degradation of metallothionein. Toxicol Appl Pharmacol 115:64–71PubMedCrossRefGoogle Scholar
  156. 156.
    Gilston BA, Wang S, Marcus MD et al (2014) Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 12:e1001987. doi: 10.1371/journal.pbio.1001987 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Philips SJ, Canalizo-Hernandez M, Yildirim I et al (2015) Transcription. Allosteric transcriptional regulation via changes in the overall topology of the core promoter Science 349:877–881. doi: 10.1126/science.aaa9809 PubMedGoogle Scholar
  158. 158.
    Pederick VG, Eijkelkamp BA, Begg SL et al (2015) ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Sci Rep 5:13139. doi: 10.1038/srep13139 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Calmettes C, Ing C, Buckwalter CM et al (2015) The molecular mechanism of zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun 6:7996. doi: 10.1038/ncomms8996 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Petering DH, Krezoski S, Villalobos J et al (1987) Cadmium-zinc interactions in the Ehrlich cell: metallothionein and other sites. Experientia Suppl 52:573–580PubMedCrossRefGoogle Scholar
  161. 161.
    Maret W (2012) New perspectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116. doi: 10.1016/j.jinorgbio.2011.11.018 PubMedCrossRefGoogle Scholar
  162. 162.
    Patel K, Kumar A, Durani S (2007) Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim Biophys Acta 1774:1247–1253. doi: 10.1016/j.bbapap.2007.07.010 PubMedCrossRefGoogle Scholar
  163. 163.
    Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309PubMedCrossRefGoogle Scholar
  164. 164.
    Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183PubMedCrossRefGoogle Scholar
  165. 165.
    Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A 95:3489–3494. doi: 10.1073/pnas.95.7.3489 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A 95:3478–3482PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nakazato K, Tomioka S, Nakajima K et al (2014) Determination of the serum metallothionein (MT)1/2 concentration in patients with Wilson’s disease and Menkes disease. J Trace Elem Med Biol 28:441–447. doi: 10.1016/j.jtemb.2014.07.013 PubMedCrossRefGoogle Scholar
  168. 168.
    Nagamine T, Nakajima K (2013) Development of a high sensitivity ELISA for the assay of metallothionein. Curr Pharm Biotechnol 14:427–431PubMedCrossRefGoogle Scholar
  169. 169.
    Nakajima K, Kodaira T, Kato M et al (2010) Development of an enzyme-linked immunosorbent assay for metallothionein-I and -II in plasma of humans and experimental animals. Clin Chim Acta 411:758–761. doi: 10.1016/j.cca.2010.02.058 PubMedCrossRefGoogle Scholar
  170. 170.
    Waeytens A, De Vos M, Laukens D (2009) Evidence for a potential role of metallothioneins in inflammatory bowel diseases. Mediat Inflamm. doi: 10.1155/2009/729172
  171. 171.
    Everhardt Queen A, Moerdyk-Schauwecker M, McKee LM et al (2016) Differential expression of inflammatory cytokines and stress genes in male and female mice in response to a lipopolysaccharide challenge. PLoS One 11:e0152289. doi: 10.1371/journal.pone.0152289 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    De SK, McMaster MT, Andrews GK (1990) Endotoxin induction of murine metallothionein gene expression. J Biol Chem 265:15267–15274PubMedGoogle Scholar
  173. 173.
    Arizono K, Kagawa S, Hamada H, Ariyoshi T (1995) Nitric oxide mediated metallothionein induction by lipopolysaccharide. Res Commun Mol Pathol Pharmacol 90:49–58PubMedGoogle Scholar
  174. 174.
    Itoh N, Kasutani K, Muto N et al (1996) Blocking effect of anti-mouse interleukin-6 monoclonal antibody and glucocorticoid receptor antagonist, RU38486, on metallothionein-inducing activity of serum from lipopolysaccharide-treated mice. Toxicology 112:29–36PubMedCrossRefGoogle Scholar
  175. 175.
    Clarkson JP, Elmes ME, Jasani B, Webb M (1985) Histological demonstration of immunoreactive zinc metallothionein in liver and ileum of rat and man. Histochem J 17:343–352PubMedCrossRefGoogle Scholar
  176. 176.
    Mulder TP, Verspaget HW, Janssens AR et al (1991) Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32:1146–1150PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sturniolo GC, Mestriner C, Lecis PE et al (1998) Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand J Gastroenterol 33:644–649PubMedCrossRefGoogle Scholar
  178. 178.
    Kruidenier L, Kuiper I, Van Duijn W et al (2003) Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 201:17–27. doi: 10.1002/path.1408 PubMedCrossRefGoogle Scholar
  179. 179.
    Bruwer M, Schmid KW, Metz KA et al (2001) Increased expression of metallothionein in inflammatory bowel disease. Inflamm Res 50:289–293. doi: 10.1007/PL00000246 PubMedCrossRefGoogle Scholar
  180. 180.
    O’Connor KS, Parnell G, Patrick E et al (2014) Hepatic metallothionein expression in chronic hepatitis C virus infection is IFNL3 genotype-dependent. Genes Immun 15:88–94. doi: 10.1038/gene.2013.66 PubMedCrossRefGoogle Scholar
  181. 181.
    Ilbäck NG, Frisk P, Mohamed N et al (2007) Virus induces metal-binding proteins and changed trace element balance in the brain during the course of a common human infection (coxsackievirus B3) in mice. Sci Total Environ 381:88–98. doi: 10.1016/j.scitotenv.2007.03.025 PubMedCrossRefGoogle Scholar
  182. 182.
    Lynes MA, Garvey JS, Lawrence DA (1990) Extracellular metallothionein effects on lymphocyte activities. Mol Immunol 27:211–219PubMedCrossRefGoogle Scholar
  183. 183.
    Lynes MA, Borghesi LA, Youn J, Olson EA (1993) Immunomodulatory activities of extracellular metallothionein. I Metallothionein effects on antibody production Toxicology 85:161–177PubMedGoogle Scholar
  184. 184.
    Youn J, Borghesi LA, Olson EA, Lynes MA (1995) Immunomodulatory activities of extracellular metallothionein. II Effects on macrophage functions J Toxicol Environ Health 45:397–413. doi: 10.1080/15287399509532004 PubMedGoogle Scholar
  185. 185.
    Youn J, Lynes MA (1999) Metallothionein-induced suppression of cytotoxic T lymphocyte function: an important immunoregulatory control. Toxicol Sci 52:199–208PubMedCrossRefGoogle Scholar
  186. 186.
    Bulua AC, Simon A, Maddipati R et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533. doi: 10.1084/jem.20102049 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Robinson JM (2008) Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol 130:281–297. doi: 10.1007/s00418-008-0461-4 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Santos SS, Brunialti MKC, Rigato O et al (2012) Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock 38:18–23. doi: 10.1097/SHK.0b013e318257114e PubMedCrossRefGoogle Scholar
  189. 189.
    Pauwels M, van Weyenbergh J, Soumillion A et al (1994) Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem 220:105–110PubMedCrossRefGoogle Scholar
  190. 190.
    Rahman MT, De Ley M (2017) Arsenic induction of metallothionein and metallothionein induction against arsenic cytotoxicity. Rev Environ Contam Toxicol. doi: 10.1007/398_2016_2
  191. 191.
    Qu W, Waalkes MP (2015) Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure. Toxicol Appl Pharmacol 282:267–274. doi: 10.1016/j.taap.2014.11.014 PubMedCrossRefGoogle Scholar
  192. 192.
    Spiering R, Wagenaar-Hilbers J, Huijgen V et al (2014) Membrane-bound metallothionein 1 of murine dendritic cells promotes the expansion of regulatory T cells in vitro. Toxicol Sci 138:69–75. doi: 10.1093/toxsci/kft268 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohammad Tariqur Rahman
    • 1
    Email author
  • Muhammad Manjurul Karim
    • 2
  1. 1.Faculty of DentistryUniversity of MalayaKula LumpurMalaysia
  2. 2.Department of MicrobiologyUniversity of DhakaDhakaBangladesh

Personalised recommendations