Advertisement

Biological Trace Element Research

, Volume 179, Issue 2, pp 318–326 | Cite as

Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei

  • Hui Guo
  • Kexu Li
  • Wei Wang
  • Chenggui Wang
  • Yuchun ShenEmail author
Article

Abstract

Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L−1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6–48 h among shrimp exposed to 1 mg L−1 Cu and at each time points in 5 mg L−1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

Keywords

Copper Apoptosis ROS production Gene expression Litopenaeus vannamei 

Notes

Compliance with Ethical Standards

Funding

This research was supported by National Natural Science Foundation of China (31600321), Guangdong Provincial Natural Science Foundation (2015A030310438), Program for Scientific Research Start-Up Funds of Guangdong Ocean University, Special Program for Outstanding Young Teachers of Guangdong Ocean University (HDYQ2015003), and Guangdong Ocean University Student’s Platform for Innovation and Entrepreneurship Training.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hong MX (2015) Shrimp farming in China—lessons from its developmental history global aquaculture advocate. http://advocate.gaalliance.org/shrimp-farming-in-china-what-should-we-learn-from-its-developmental-history/
  2. 2.
    Ransberry VE, Blewett TA, McClelland GB (2016) The oxidative stress response in freshwater-acclimated killifish (Fundulus heteroclitus) to acute copper and hypoxia exposure. Comp Biochem Phys Part C: Toxicol Pharm 179:11–18Google Scholar
  3. 3.
    Wang SL, Xu XR, Sun YX, Liu JL, Li HB (2013) Heavy metal pollution in coastal areas of South China: a review. Mar Pollu Bull 76:7–15CrossRefGoogle Scholar
  4. 4.
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539CrossRefPubMedGoogle Scholar
  5. 5.
    Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefPubMedGoogle Scholar
  6. 6.
    Vijayavel K, Downs CA, Ostrander GK, Richmond RH (2012) Oxidative DNA damage induced by iron chloride in the larvae of the lace coral Pocillopora damicornis. Comp Biochem Phys C Toxicol Pharm 155:275–280CrossRefGoogle Scholar
  7. 7.
    Santos MHS, da Cunha NT, Bianchini A (2000) Effects of copper and zinc on growth, feeding and oxygen consumption of Farfantepenaeus paulensis postlarvae (Decapoda: Penaeidae). J Exp Mar Biol Ecol 247:233–242CrossRefPubMedGoogle Scholar
  8. 8.
    Valavanidis A, Vlachogianni T (2010) Metal pollution in ecosystems. Ecotoxicology studies and risk assessment in the marine environment. Sci Adv Environ Toxicol Ecot Issues 1–14Google Scholar
  9. 9.
    Wang ZH, Feng J, Nie XP (2015) Recent environmental changes reflected by metals and biogenic elements in sediments from the Guishan Island, the Pearl River Estuary, China. Estuar Coast and Shelf S 164:493–505CrossRefGoogle Scholar
  10. 10.
    Chen JC, Lin CH (2001) Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture 192:55–65CrossRefGoogle Scholar
  11. 11.
    Liao CM, Chang CF, Yeh CH, Chen SC, Chiang KC, Chio CP (2006) Metal stresses affect the population dynamics of disease transmission in aquaculture species. Aquaculture 257:321–332CrossRefGoogle Scholar
  12. 12.
    Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA (2016) ROS dependent copper toxicity in hydra-biochemical and molecular study. Comp Biochem Phys C: Toxicol Pharm 185:1–12Google Scholar
  13. 13.
    Schwarz J, Mitchelmore C, Jones R, O’Dea A, Seymour S (2013) Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp Biochem Phys C: Toxicol Pharm 157:272–279Google Scholar
  14. 14.
    Sun S, Ge XP, Zhu J, Fu HT, Jiang ZQ (2014) Effects of water-borne copper on the survival, antioxidant status, metallothionein-I mRNA expression and physiological responses of the Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura) larvae. Sci Mar 78:91–97CrossRefGoogle Scholar
  15. 15.
    Kong X, Jiang H, Wang S, Wu X, Fei W, Li L, Nie G, Li X (2013) Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere 92:1458–1464CrossRefPubMedGoogle Scholar
  16. 16.
    Xian JA, Wang AL, Ye CX, Chen XD, Wang WN (2010) Phagocytic activity, respiratory burst, cytoplasmic free-Ca(2+) concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress. Comp Biochem Phys C Toxicol Pharm 152:182–188CrossRefGoogle Scholar
  17. 17.
    Martinez A, Romero Y, Castillo T, Mascaro M, Lopez-Rull I, Simoes N, Arcega-Cabrera F, Gaxiola G, Barbosa A (2014) The effect of copper on the color of shrimps: redder is not always healthier. PLoS One 9:e107673CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rao MS, Anjaneyulu N (2008) Effect of copper sulfate on molt and reproduction in shrimp Litopenaeus vannamei. Int J Biol Chem 2:35–41CrossRefGoogle Scholar
  19. 19.
    Frías-Espericueta MG, Castro-Longoria R, Barrón-Gallardo GJ, Osuna-López JI, Abad-Rosales SM, Páez-Osuna F, Voltolina D (2008) Histological changes and survival of Litopenaeus vannamei juveniles with different copper concentrations. Aquaculture 278:97–100CrossRefGoogle Scholar
  20. 20.
    Yeh ST, Liu CH, Chen JC (2004) Effect of copper sulfate on the immune response and susceptibility to Vibrio alginolyticus in the white shrimp Litopenaeus vannamei. Fish Shellfish Immun 17:437–446CrossRefGoogle Scholar
  21. 21.
    Xian JA, Miao YT, Li B, Guo H, Wang AL (2013) Apoptosis of tiger shrimp (Penaeus monodon) haemocytes induced by Escherichia coli lipopolysaccharide. Comp Biochem Phys A: Mol Integ Physiol 164:301–306CrossRefGoogle Scholar
  22. 22.
    Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Bioch Bioph Sin 37:719–727CrossRefGoogle Scholar
  23. 23.
    Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104CrossRefPubMedGoogle Scholar
  25. 25.
    Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Gene Dev 13:239–252CrossRefPubMedGoogle Scholar
  26. 26.
    Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410CrossRefPubMedGoogle Scholar
  27. 27.
    Leu JH, Chen YC, Chen LL, Chen KY, Huang HT, Ho JM, Lo CF (2012) Litopenaeus vannamei inhibitor of apoptosis protein 1 (LvIAP1) is essential for shrimp survival. Dev Comp Immunol 38:78–87CrossRefPubMedGoogle Scholar
  28. 28.
    Robertson L, Bray W, Leung-Trujillo J, Lawrence A (1987) Practical molt staging of Penaeus setiferus and Penaeus stylirostris. J World Aquacult Soc 18:180–185CrossRefGoogle Scholar
  29. 29.
    Guo H, Xian JA, Li B, Ye CX, Wang AL, Miao YT, Liao SA (2013) Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress. Comp Biochem and Phys C: Toxicol Pharm 157:366–371Google Scholar
  30. 30.
    Wei K, Yang J (2016) Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii. Fish Shellfish Immun 52:221–229CrossRefGoogle Scholar
  31. 31.
    Liu WX, Li XD, Shen ZG, Wang DC, Wai OW, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388CrossRefPubMedGoogle Scholar
  32. 32.
    Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323CrossRefPubMedGoogle Scholar
  33. 33.
    Qiu YW (2015) Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar Coast Shelf S Part B 163:7–14CrossRefGoogle Scholar
  34. 34.
    Ministry of Agriculture SEPA (2012) Report on state of the fishery eco-environment in China, Ministry of Agriculture, State Environmental Protection Administration. Beijing, ChinaGoogle Scholar
  35. 35.
    Soegianto A, Irawan B, Usman N (2013) Effects of sublethal copper concentrations on gills of white shrimp (Litopenaeus vannamei, Boone 1931). B Environ Contam Tox 91:630–634CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Allen Davis D, Rhodes MA (2014) Comparative evaluation of copper sulfate and tribasic copper chloride on growth performance and tissue response in Pacific white shrimp Litopenaeus vannamei fed practical diets. Aquaculture 434:411–417CrossRefGoogle Scholar
  37. 37.
    Chang CC, Yeh MS, Cheng W (2009) Cold shock-induced norepinephrine triggers apoptosis of haemocytes via caspase-3 in the white shrimp, Litopenaeus vannamei. Fish Shellfish Immun 27:695–700CrossRefGoogle Scholar
  38. 38.
    Gong Y, Ju CY, Zhang XB (2015) The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp. Fish Shellfish Immun 46:516–522CrossRefGoogle Scholar
  39. 39.
    Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM (2013) Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat Toxicol 128–129(2):183–189CrossRefPubMedGoogle Scholar
  40. 40.
    Wang B, Feng L, Jiang WD, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Liu Y, Zhou XQ (2015) Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: preventive role of arginine. Aquat Toxicol 158:125–137CrossRefPubMedGoogle Scholar
  41. 41.
    Rhee JS, Yu IT, Kim BM, Jeong CB, Lee KW, Kim MJ et al (2013) Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. Aquat Toxicol 132:182–189CrossRefPubMedGoogle Scholar
  42. 42.
    Leu JH, Kuo YC, Kou GH, Lo CF (2008) Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev Comp Immunol 32:121–133CrossRefPubMedGoogle Scholar
  43. 43.
    Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. The EMBO J 16:6914–6925CrossRefPubMedGoogle Scholar
  44. 44.
    Menze MA, Fortner G, Nag S, Hand SC (2010) Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death? Apoptosis 15:293–312CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    D’Amelio M, Sheng M, Cecconi F (2012) Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 35:700–709CrossRefPubMedGoogle Scholar
  46. 46.
    de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34:200–211PubMedGoogle Scholar
  47. 47.
    Rico D, Martín-González A, Díaz S, de Lucas P, Gutiérrez JC (2009) Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp Biochem Phys C: Toxicol Pharm 149:90–96Google Scholar
  48. 48.
    Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104CrossRefPubMedGoogle Scholar
  49. 49.
    Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455CrossRefPubMedGoogle Scholar
  50. 50.
    Griendling KK, Fitz Gerald GA (2003) Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916CrossRefPubMedGoogle Scholar
  51. 51.
    Lu X, Wang C, Liu BZ (2015) The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Fish Shellfish Immun 42:58–65CrossRefGoogle Scholar
  52. 52.
    Hung MN, Shiomi R, Nozaki R, Kondo H, Hirono I (2014) Identification of novel copper/zinc superoxide dismutase (Cu/ZnSOD) genes in kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immun 40:472–477CrossRefGoogle Scholar
  53. 53.
    Zhang Q, Li F, Zhang X, Dong B, Zhang J, Xie Y, Xiang J (2008) cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immun 24:584–591CrossRefGoogle Scholar
  54. 54.
    He JY, Chi CF, Liu HH (2014) Identification and analysis of an intracellular Cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd2+. Dev Comp Immunol 47:1–5CrossRefPubMedGoogle Scholar
  55. 55.
    Guo H, Miao YT, Xian JA, Qian K, Wang AL (2015) Expression profile of antioxidant enzymes in hemocytes from freshwater prawn Macrobrachium rosenbergii exposed to an elevated level of copper. B Environ Contam Tox 95:447–451CrossRefGoogle Scholar
  56. 56.
    Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radical Bio Med 47:344–356CrossRefGoogle Scholar
  57. 57.
    Mahmood K, Yang JS, Chen D, Wang M, Yang F, Yang WJ (2009) Response of metallothionein gene-1 to laboratory exposure to heavy metals and thermal stress in the freshwater prawn Macrobrachium rosenbergii. J Hazard Mater 167:523–530CrossRefPubMedGoogle Scholar
  58. 58.
    Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183CrossRefPubMedGoogle Scholar
  59. 59.
    Liu Y, Wu H, Kou L, Liu X, Zhang J, Guo Y et al (2014) Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PLoS One 9:e112759CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bouskill NJ, Handy RD (2006) Differentiating copper and arsenic toxicity using biochemical biomarkers in Asellus aquaticus and Dreissena polymorpha. Ecotox Environ Safe 65:342–349CrossRefGoogle Scholar
  61. 61.
    Pedersen SN, Lundebye AK, Depledge MH (1997) Field application of metallothionein and stress protein biomarkers in the shore crab (Carcinus maenas) exposed to trace metals. Aquat Toxicol 37:183–200CrossRefGoogle Scholar
  62. 62.
    Thanomsit C, Nantanawat P, Wassmur B, Gräns J, Celander MC, Kanchanopas-Barnette P (2013) Characterization of metallothionein from Asian sea bass (Lates calcarifer, Bloch) and application as a biomarker for heavy metal exposure in Thailand. Asian J Water Environ Pollut 10:53–64Google Scholar
  63. 63.
    Wu JP, Chen HC (2005) Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comp Biochem Phys C: Toxicol Pharm 140:383–394Google Scholar
  64. 64.
    Wang Y, Zhao Z, Zhang L, Hu C, Ren C, Yuan L (2014) Molecular characterization of metallothionein from white shrimp, Litopenaeus vannamei and its expression response to salinity stress. Mar Biol Res 10:731–737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hui Guo
    • 1
  • Kexu Li
    • 1
  • Wei Wang
    • 1
  • Chenggui Wang
    • 1
  • Yuchun Shen
    • 1
    Email author
  1. 1.Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of FisheriesGuangdong Ocean UniversityZhanjiangPeople’s Republic of China

Personalised recommendations