Biological Trace Element Research

, Volume 178, Issue 2, pp 218–227 | Cite as

Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells

  • Deepika Soni
  • Deepa Gandhi
  • Prashant Tarale
  • Amit Bafana
  • R.A. Pandey
  • Saravanadevi SivanesanEmail author


In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70–80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).


ZnO NP Cytotoxicity MTT Protein expression ROS DNA damage 



The authors are thankful to CSIR-NEERI for providing necessary facilities to conduct the research work. Deepika Soni is grateful to the Department of Science and Technology (DST), Government of India, for the award of INSPIRE fellowship (IF10154). This manuscript represents CSIR-NEERI communication number KRC/2016/JUN/EBD-EHD/1.

Compliance with Ethical Standards

Peripheral blood mononuclear cells (PBMC) were obtained from healthy human donor (nonsmoker, nonalcoholic, and under no medication) following the ethical approval from the research ethics committee and standards laid down in 1964 with latest amendments of Declaration of Helsinki [20].

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509CrossRefPubMedGoogle Scholar
  2. 2.
    Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Bioint 90:16–20CrossRefGoogle Scholar
  4. 4.
    Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183CrossRefPubMedGoogle Scholar
  5. 5.
    Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci App 4:95–112CrossRefGoogle Scholar
  6. 6.
    Soni D, Naoghare PK, Devi SS, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. Rev Environ Cont Toxicol 234:1–47Google Scholar
  7. 7.
    Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Tot Environ 407(4):1461–1468CrossRefGoogle Scholar
  8. 8.
    Manzo S, Rocco A, Carotenuto R, Picione F, De Luca Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Poll Res Int 18(5):756–763CrossRefGoogle Scholar
  9. 9.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspension on a broad spectrum of microorganisms. FEMS Microbiol 279:71–76CrossRefGoogle Scholar
  10. 10.
    Bayroodi E, Jalal R (2016) Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Ir J Microbiol 8(2):85–92Google Scholar
  11. 11.
    Reddy KM, Feris K, Jason B, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(213902):213902-1–213902-3Google Scholar
  12. 12.
    Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotech Biol Med 7:184–192CrossRefGoogle Scholar
  13. 13.
    Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro 24(1):45–55CrossRefPubMedGoogle Scholar
  15. 15.
    De Angelis I, Barone F, Zijno A, Bizzarri L, Russo MT, Pozzi R, Franchini F, Giudetti G, Uboldi C, Ponti J, Rossi F, De Berardis B (2013) Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology 7(8):1361–1372CrossRefPubMedGoogle Scholar
  16. 16.
    Soni D, Bafana A, Gandhi D, Saravanadevi S, Pandey RA (2014) The stress response of Pseudomonas species to silver nanoparticles at molecular level. Environ Toxicol Chem 33(9):2126–2132CrossRefPubMedGoogle Scholar
  17. 17.
    Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 13:1–13Google Scholar
  18. 18.
    Vielkind M, Kampen I, Kwade A (2013) Zinc oxide nanoparticles in bacterial growth medium: optimized dispersion and growth inhibition of pseudomonas putida. Adv Nanopart 2013(2):287–293CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  20. 20.
    World Medical Association (1964, 2002) Declaration of Helsinki: ethical principles for medical research involving human subjects. World Medical Association, Helsinki, Finland.
  21. 21.
    Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MKJ, AlSalhi MS, Alrokayan SA (2011) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, surviving and bax/bcl-2 pathways: role of oxidative stress. Nanomed Nanotech Biol Med 7:904–913CrossRefGoogle Scholar
  22. 22.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191CrossRefPubMedGoogle Scholar
  23. 23.
    Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefPubMedGoogle Scholar
  24. 24.
    Janknegt PJ, Rijstenbil JW, Van de Poll WH, Gechev TS, Buma AGJ (2007) A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J Photochem Photobiol B:Biol 87:218–226CrossRefGoogle Scholar
  25. 25.
    Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94(6):2102–2111PubMedGoogle Scholar
  26. 26.
    Luna MAC, Cordeiro CCS, Vieira ER, Estevam Alves MHM, Freitas JHES, Okada K, Takaki GMC, Elesbao do Nascimento A (2013) Mechanisms of adaptation and tolerance in Aspergillus niger UCP /WFCC 1261 by copper-induced to oxidative response. Int J Mol Sci 14:1–27Google Scholar
  27. 27.
    Gümüş D, Berber AA, Ada K, Aksoy H (2014) In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes. Cytotechnol 66(2):317–325CrossRefGoogle Scholar
  28. 28.
    Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnol 19(29):295103CrossRefGoogle Scholar
  29. 29.
    Harwood CS, Fosnaugh K, Dispensa M (1989) Flagellation of pseudomonas putida and analysis of its motile behavior. J Bacteriol 171:4063–4066CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Molina Â, Ramos C, Duque E, Ronchel MC (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Bio Biochem 32:315–321CrossRefGoogle Scholar
  31. 31.
    Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont J (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nevskaya N, Tishchenko S, Gabdoulkhakov A, Nikonova E, Nikonov O, Nikulin A, Platonova O, Garber M, Nikonov S, Piendl W (2005) Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA. Nuc Ac Res 33(2):478–485CrossRefGoogle Scholar
  33. 33.
    Kaczanowska M, Ryden-Aulin M (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Bio Rev 71(3):477–494CrossRefGoogle Scholar
  34. 34.
    Wilson DN, Gupta R, Mikolajka A, Nierhaus KH (2001) Ribosomal proteins: role in ribosomal functions eLS. Available from:
  35. 35.
    Poole LB, Hr E (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemist 35:56–64CrossRefGoogle Scholar
  36. 36.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  37. 37.
    Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39CrossRefGoogle Scholar
  38. 38.
    Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRefPubMedGoogle Scholar
  39. 39.
    Xiao Y, Vijver MG, Chen G, Peijnenburg WJ (2015) Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49(7):4657–4664CrossRefPubMedGoogle Scholar
  40. 40.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41:2699–2711CrossRefGoogle Scholar
  41. 41.
    Yang H, Liu C, Yang D, Zhang H, Xi Z (2008) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: role of particle size, shape and composition. J App Toxicol 29:69–78CrossRefGoogle Scholar
  42. 42.
    Wang J, Deng X, Zhang F, Chen D, Ding W (2014) ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nano Res Lett 9:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Deepika Soni
    • 1
  • Deepa Gandhi
    • 2
  • Prashant Tarale
    • 2
  • Amit Bafana
    • 2
  • R.A. Pandey
    • 1
  • Saravanadevi Sivanesan
    • 2
    Email author
  1. 1.Environmental Biotechnology DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia
  2. 2.Environmental Health DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations