Advertisement

Biological Trace Element Research

, Volume 178, Issue 1, pp 127–135 | Cite as

Selenium Administration Alleviates Toxicity of Chromium(VI) in the Chicken Brain

  • Pan Hao
  • Yiran Zhu
  • Shenghua Wang
  • Huiyu Wan
  • Peng Chen
  • Yang Wang
  • Ziqiang Cheng
  • Yongxia LiuEmail author
  • Jianzhu LiuEmail author
Article

Abstract

Selenium (Se) can play a protective role against heavy metal toxicity. This experiment aims to evaluate the effect of Se supplementation at different doses on the chicken brains. Oxidative stress was induced in the chicken brains by chromium(VI). A total of 105 Hyland brown male chickens were randomly divided into seven groups, including the control group, poisoned group [6%LD50 K2Cr2O7 body weight (B.W.)], and detoxification groups K2Cr2O7 (6%LD50) + Se (0.31, 0.63, 1.25, 2.50, and 5.00 Na2SeO3 mg/kg B.W.) orally in water for 42 days. The chickens were detected by the activities of mitochondrial membrane potential, 2′-benzoyloxycinnamaldehyde, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and Ca2+-ATPase. Cr(VI) administration caused histopathological damage. In addition, changes in oxidative stress indicators were observed in the chicken’s brains. Se supplement increased the levels of GSH, mitochondrial membrane potential (MMP), and Ca2+-ATPase and reduced MDA activity in the detoxification groups. However, the high-dose Se supplementation groups of 2.50 and 5.00 mg/kg reduced the activities of GSH, MMP, and Ca2+-ATPase; increased the brain–body ratio; and increased SOD activity. In conclusion, Cr(VI) exposure caused oxidative stress. Se exerted a remission effect on toxic responses in the chicken brains. However, a high Se concentration was synergistic to the toxic effect of Cr(VI).

Keywords

Cr(VI) Selenium Oxidative damage Ca2+-ATPase Mitochondrial membrane potential 

Notes

Acknowledgements

This work was supported by the National Key R&D Program (2016YFD0501208), the Shandong Modern Agricultural Technology & Industry System (No. SDAIT-11-04).

References

  1. 1.
    Lou J, Jin L, Wu N, Tan Y, Song Y, Gao M, Liu K, Zhang X, He J (2013) DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association 55C:533–540CrossRefGoogle Scholar
  2. 2.
    Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24:66–73CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Myers CR (2012) The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 52:2091–2107CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188:276–288CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  6. 6.
    Travacio M, JMA P, Llesuy S (2001) Erratum to “chromium (VI) induces oxidative stress in the mouse brain”: [toxicology 150 (2000) 137–146]. Toxicology 162:139–148CrossRefPubMedGoogle Scholar
  7. 7.
    Yon JM, Baek IJ, Lee SR, Yan J, Kim MR, Nahm SS, Kim JS, Ahn B, Lee BJ, Yun YW (2008) The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis. J Mol Histol 39:95–103CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166CrossRefPubMedGoogle Scholar
  9. 9.
    Strehler EE (2015) Plasma membrane calcium ATPases: from generic Ca 2+ sump pumps to versatile systems for fine-tuning cellular Ca 2+. Biochemical & Biophysical Research Communications 460:26–33Google Scholar
  10. 10.
    Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268CrossRefPubMedGoogle Scholar
  11. 11.
    JX X, Cao CY, Sun YC, Wang LL, Li N, SW X, Li JL (2014) Effects on liver hydrogen peroxide metabolism induced by dietary selenium deficiency or excess in chickens. Biol Trace Elem Res 159:174–182CrossRefGoogle Scholar
  12. 12.
    Naziroğlu M, Çelik Ö, Uğuz AC, Bütün A (2015) Protective effects of riboflavin and selenium on brain microsomal Ca2 + −ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model. Biol Trace Elem Res 164:72–79CrossRefPubMedGoogle Scholar
  13. 13.
    Prashant Babaji M, Bc Manjunath M, Mahesh Melkundi M, Rani S, Vatchala R (2011) Dietary selenium reduces retention of methyl mercury in freshwater fish. Environmental Science & Technology 45:9793–9798CrossRefGoogle Scholar
  14. 14.
    Chen X, Zhu YH, Cheng XY, Zhang ZW, SW X (2012) The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes. Molecules 17:14565–14572CrossRefPubMedGoogle Scholar
  15. 15.
    Soudani N, Troudi A, Amara IB, Bouaziz H, Boudawara T, Zeghal N (2012) Ameliorating effect of selenium on chromium (VI)-induced oxidative damage in the brain of adult rats. Journal of Physiology & Biochemistry 68:397–409CrossRefGoogle Scholar
  16. 16.
    Xu T, Gao X, Liu G (2016) The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol Trace Elem Res 169:1–9CrossRefGoogle Scholar
  17. 17.
    Horn HJ (1956) Simplified LD 50 (or ED 50 ) calculations. Biometrics 12:311–322CrossRefGoogle Scholar
  18. 18.
    Zhu FH, Zhu LQ, Li L, Sun JQ, Chen F (2010) Effects of hige levels of nano-Se on blood selenium content and antioxidant abilities in hens. Chinese Journal of Animal Science 46:31–34Google Scholar
  19. 19.
    Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46:639–653CrossRefPubMedGoogle Scholar
  20. 20.
    Bagchi D, Hassoun EA, Bagchi M, Stohs SJ (1995) Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in Sprague-Dawley rats. Comparative biochemistry and physiology Part C, Pharmacology, toxicology & endocrinology 110:177–187CrossRefGoogle Scholar
  21. 21.
    Kadiiska MB, Xiang QH, Mason RP (1994) In vivo free radical generation by chromium(VI): an electron spin resonance spin-trapping investigation. Chem Res Toxicol 7:800–805CrossRefPubMedGoogle Scholar
  22. 22.
    Zwolak I, Zaporowska H (2011) Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biology & Toxicology 28:31–46CrossRefGoogle Scholar
  23. 23.
    Sugiyama M (1992) Role of physiological antioxidants in chromium(VI)-induced cellular injury. Free Radic Biol Med 12:397–407CrossRefPubMedGoogle Scholar
  24. 24.
    Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biological Trace Element Research:1–5Google Scholar
  25. 25.
    Bagchi D, Bagchi M, Stohs SJ (2001) Chromium (vi)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor Gene. Molecular & Cellular Biochemistry 222:149–158CrossRefGoogle Scholar
  26. 26.
    Soudani N, Amara IB, Sefi M, Boudawara T, Zeghal N (2011) Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Experimental & Toxicologic Pathology Official Journal of the Gesellschaft Fur Toxikologische Pathologie 63:541–548CrossRefGoogle Scholar
  27. 27.
    Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:1–12CrossRefGoogle Scholar
  28. 28.
    Li X, Hill KE, Burk RF, May JM (2001) Selenium spares ascorbate and K-tocopherol incultured liver cell lines under oxidant stress. FEBS Lett 508:489–492CrossRefPubMedGoogle Scholar
  29. 29.
    Wang HW, Wang JX, Yang LK, Liu L, Lu SS, Yang FK, Cai DB (2014) Effects of dietary selenium supplements on the superoxide dismutase (SOD) activity of Neocaridina heteropoda (Crustacea: Decapoda: Atyidae: Caridina ) exposed to ambient sodium polyphosphate. Adv Mater Res 1073-1076:1841–1843CrossRefGoogle Scholar
  30. 30.
    Travacio M, Llesuy S (1996) Antioxidant enzymes and their modification under oxidative stress conditions. Ciênccult 48:9–13Google Scholar
  31. 31.
    Kouba A, Velíšek J, Stará A, Masojídek J, Kozák P (2014) Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). Biomed Res Int 2014:143–146CrossRefGoogle Scholar
  32. 32.
    Tuzen M, Pekiner OZ (2015) Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages. Food Chem 188:619–624CrossRefPubMedGoogle Scholar
  33. 33.
    Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37CrossRefPubMedGoogle Scholar
  34. 34.
    Silva MAOD, Andrade SALD, Mazzafera P, Arruda MAZ (2011) Evaluation of sunflower metabolism from zinc and selenium addition to the culture: a comparative metallomic study. Int J Mass Spectrom 307:55–60CrossRefGoogle Scholar
  35. 35.
    Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235CrossRefPubMedGoogle Scholar
  36. 36.
    Bütün A, Nazıroğlu M, Demirci S, Celik O, Uğuz AC (2015) Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J Membr Biol 248:205–213CrossRefPubMedGoogle Scholar
  37. 37.
    Naziroğlu M, Kutluhan S, Yilmaz M (2008) Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2 + −ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. J Membr Biol 225:39–49CrossRefPubMedGoogle Scholar
  38. 38.
    Rossi SC, Gorman N, Wetterhahn KE (1988) Mitochondrial reduction of the carcinogen chromate: formation of chromium(V). Chem Res Toxicol 1(2):101–107CrossRefPubMedGoogle Scholar
  39. 39.
    Khan FH, Ambreen K, Fatima G, Kumar S (2012) Assessment of health risks with reference to oxidative stress and DNA damage in chromium exposed population. Sci Total Environ 430:68–74CrossRefPubMedGoogle Scholar
  40. 40.
    Travacio M, Polo JMA, Llesuy S (2000) Chromium(VI) induces oxidative stress in the mouse brain. Toxicology 150:137–146CrossRefPubMedGoogle Scholar
  41. 41.
    Simoni J, Feola M Selenium protection from cadmium and chromium poisoning. In, 1986. pp 371–371Google Scholar
  42. 42.
    Battin EE, Zimmerman MT, Ramoutar RR, Quarles CE, Brumaghim JL (2011) Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics 3:503–512CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pan Hao
    • 1
  • Yiran Zhu
    • 1
  • Shenghua Wang
    • 1
  • Huiyu Wan
    • 1
  • Peng Chen
    • 1
  • Yang Wang
    • 1
  • Ziqiang Cheng
    • 1
  • Yongxia Liu
    • 1
    Email author
  • Jianzhu Liu
    • 2
    Email author
  1. 1.College of Veterinary MedicineShandong Agricultural UniversityTai’anPeople’s Republic of China
  2. 2.Research Center for Animal Disease Control Engineering Shandong ProvinceShandong Agricultural UniversityTai’anPeople’s Republic of China

Personalised recommendations