Advertisement

Biological Trace Element Research

, Volume 175, Issue 2, pp 298–305 | Cite as

Assessment the Exposure Level of Rare Earth Elements in Workers Producing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles

  • Yan Li
  • Hua Yu
  • Peng Li
  • Ying BianEmail author
Article

Abstract

In order to assess occupational exposure level of 15 rare earth elements (REEs) and identify the associated influence, we used inductively coupled plasma mass spectrometry (ICP-MS) based on closed-vessel microwave-assisted wet digestion procedure to determinate the concentration of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in urinary samples obtained from workers producing ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggest that La and Ce were the primary component, together accounting for 97 % of total REEs in workers. The urinary levels of La, and Ce among the workers (6.36, 15.32 μg.g−1 creatinine, respectively) were significantly enriched compared to those levels measured in the control subjects (1.52, 4.04 μg.g−1 creatinine, respectively) (p < 0.05). This study simultaneously identified the associated individual factors, the results indicate that the concentrations in over 5 years group (11.64 ± 10.93 for La, 27.83 ± 24.38 for Ce) were significantly elevated compared to 1–5 years group (2.58 ± 1.51 for La, 6.87 ± 3.90 for Ce) (p < 0.05). Compared the urinary levels of La and Ce at the separation and packaging locations (9.10 ± 9.51 for La, 22.29 ± 21.01 for Ce) with the other locations (2.85 ± 0.98 for La, 6.37 ± 2.12 for Ce), the results show urinary concentrations were significantly higher in workers at separation and packaging locations (p < 0.01). Inter-individual variation in levels of La and Ce in urine is the result of multi-factorial comprehensive action. Further researches should focus on the multiple factors contributing to the REEs levels of the occupationally exposed workers.

Keywords

Exposure assessment Workers Cerium and lanthanum oxide nanoparticles Inductively coupled plasma mass spectrometry (ICP-MS) 

Notes

Acknowledgments

The authors would like to express sincere thanks to the University of Shanghai for technical support during sampling. The authors also acknowledge Zubing Wang, Jinshun Zhao, MinBo Lan, Wei Loo, Tianxi Hu, Zhaolin Xia, Muquan Yin, Yuliang Zhao, Chunying Chen, Guang Jia, Haifang Wang, Senlin Lu, Meng Tang, Frank Fanqing Chen, Liang Chen, and HuiHui Xu for their assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ryu JS, Lee KS, Lee SG, Lee D, Chang HW (2007) Seasonal and spatial variations of rare earth elements in rainwaters, river waters and total suspended particles in air in South Korea. J Alloys Compd 437(1–2):344–350. doi: 10.1016/j.jallcom.2006.08.002 CrossRefGoogle Scholar
  2. 2.
    Dolegowska S, Migaszewski ZM (2013) Anomalous concentrations of rare earth elements in the moss-soil system from south-central Poland. Environ Pollut 178:33–40. doi: 10.1016/j.envpol.2013.02.024 CrossRefPubMedGoogle Scholar
  3. 3.
    Dubinin AV (2004) Geochemistry of rare earth elements in the ocean. Lithol Miner Resour 39(4):289–307. doi: 10.1023/B:LIMI.0000033816.14825.a2 CrossRefGoogle Scholar
  4. 4.
    He M, Hu B, Zeng Y, Jiang Z (2005) ICP-MS direct determination of trace amounts of rare earth impurities in various rare earth oxides with only one standard series. J Alloys Compd 390(1–2):168–174. doi: 10.1016/j.jallcom.2004.06.107 CrossRefGoogle Scholar
  5. 5.
    Pagano G, Guida M, Tommasi F, Oral R (2015) Health effects and toxicity mechanisms of rare earth elements-knowledge gaps and research prospects. Ecotoxicol Environ Saf 115:40–48. doi: 10.1016/j.ecoenv.2015.01.030 CrossRefPubMedGoogle Scholar
  6. 6.
    Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12(2):1253–1278. doi: 10.3390/ijerph120201253 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    He L, Su Y, Lanhong J, Shi S (2015) Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. J Rare Earths 33(8):791–799. doi: 10.1016/s1002-0721(14)60486-5 CrossRefGoogle Scholar
  8. 8.
    Lee TL, Raitano JM, Rennert OM, Chan SW, Chan WY (2012) Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine 8(5):599–608. doi: 10.1016/j.nano.2011.08.005 PubMedGoogle Scholar
  9. 9.
    Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, Castranova V (2015) Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol 288(1):63–73. doi: 10.1016/j.taap.2015.07.012 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ma JY, Young SH, Mercer RR, Barger M, Schwegler-Berry D, Ma JK, Castranova V (2014) Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis. Toxicol Appl Pharmacol 278(2):135–147. doi: 10.1016/j.taap.2014.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, Casano G, Botta A, Kovacic H, Pietri S (2012) EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact 199(3):161–176. doi: 10.1016/j.cbi.2012.08.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V (2012) Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 262(3):255–264. doi: 10.1016/j.taap.2012.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, Schwegler-Berry D, Castranova V, Ma JK (2010) Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 5(3):312–325. doi: 10.3109/17435390.2010.519835 CrossRefPubMedGoogle Scholar
  14. 14.
    Heitland P, Koster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta; Int J Clin Chem 365(1–2):310–318. doi: 10.1016/j.cca.2005.09.013 CrossRefGoogle Scholar
  15. 15.
    Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185. doi: 10.1016/j.toxlet.2006.12.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Hesterberg TW, Long CM, Bunn WB, Lapin CA, McClellan RO, Valberg PA (2012) Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk. Inhal Toxicol 24(Suppl 1):1–45. doi: 10.3109/08958378.2012.691913 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jiang DG, Yang J, Zhang S, Yang da J (2012) A survey of 16 rare earth elements in the major foods in China. Biomed Environ Sci: BES 25(3):267–271. doi: 10.3967/0895-3988.2012.03.003 PubMedGoogle Scholar
  18. 18.
    Wei B, Li Y, Li H, Yu J, Ye B, Liang T (2013) Rare earth elements in human hair from a mining area of China. Ecotoxicol Environ Saf 96:118–123. doi: 10.1016/j.ecoenv.2013.05.031 CrossRefPubMedGoogle Scholar
  19. 19.
    Ivanenko NB, Ivanenko AA, Solovyev ND, Zeimal AE, Navolotskii DV, Drobyshev EJ (2013) Biomonitoring of 20 trace elements in blood and urine of occupationally exposed workers by sector field inductively coupled plasma mass spectrometry. Talanta 116:764–769. doi: 10.1016/j.talanta.2013.07.079 CrossRefPubMedGoogle Scholar
  20. 20.
    Li B, Yin M (2000) Characterization and correction of oxide interference for the determination of rare earth elements in biological samples by ICP-MS. Rock and Mineral Analysis 19(2):101–105Google Scholar
  21. 21.
    Gil F, Hernández AF, Márquez C, Femia P, Olmedo P, López-Guarnido O, Pla A (2011) Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ 409(6):1172–1180. doi: 10.1016/j.scitotenv.2010.11.033 CrossRefPubMedGoogle Scholar
  22. 22.
    Darroudi M, Hakimi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Gholami L (2013) Facile synthesis, characterization, and evaluation of neurotoxicity effect of cerium oxide nanoparticles. Ceram Int 39(6):6917–6921. doi: 10.1016/j.ceramint.2013.02.026 CrossRefGoogle Scholar
  23. 23.
    Hernández-Mendoza H, Chamizo E, Yllera A, García-León M, Delgado A (2010) Measurement of 239Pu in urine samples at ultra-trace levels using a 1MV compact AMS system. Nucl Instrum Methods Phys Res, Sect B 268(7–8):1331–1333. doi: 10.1016/j.nimb.2009.10.166 CrossRefGoogle Scholar
  24. 24.
    Forrer R, Gautschi K, Stroh A, Lutz H (1999) Direct determination of selenium and other trace elements in serum samples by ICP-MS. J Trace Elem Med Biol 12(4):240–247. doi: 10.1016/s0946-672x(99)80065-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Pacheco PH, Gil RA, Smichowski P, Polla G, Martinez LD (2008) Trace aluminium determination in biological samples after microwave digestion followed by solid phase extraction with l-methionine on controlled pore glass. Microchem J 89(1):1–6. doi: 10.1016/j.microc.2007.10.004 CrossRefGoogle Scholar
  26. 26.
    Bocca B, Alimonti A, Forte G, Petrucci F, Pirola C, Senofonte O, Violante N (2003) High-throughput microwave-digestion procedures to monitor neurotoxic elements in body fluids by means of inductively coupled plasma mass spectrometry. Anal Bioanal Chem 377(1):65–70. doi: 10.1007/s00216-003-2029-4 CrossRefPubMedGoogle Scholar
  27. 27.
    Bizzi CA, Nobrega JA, Barin JS, Oliveira JS, Schmidt L, Mello PA, Flores EM (2014) Effect of simultaneous cooling on microwave-assisted wet digestion of biological samples with diluted nitric acid and O2 pressure. Anal Chim Acta 837:16–22. doi: 10.1016/j.aca.2014.05.051 CrossRefPubMedGoogle Scholar
  28. 28.
    Mketo N, Nomngongo PN, Ngila JC (2016) An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry. Microchem J 124:201–208. doi: 10.1016/j.microc.2015.08.010 CrossRefGoogle Scholar
  29. 29.
    Fort M, Cosin-Tomas M, Grimalt JO, Querol X, Casas M, Sunyer J (2014) Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res Int 21(15):9234–9241. doi: 10.1007/s11356-014-2827-6 CrossRefPubMedGoogle Scholar
  30. 30.
    Shah F, Kazi TG, Afridi HI, Kazi N, Baig JA, Shah AQ, Khan S, Kolachi NF, Wadhwa SK (2011) Evaluation of status of trace and toxic metals in biological samples (scalp hair, blood, and urine) of normal and anemic children of two age groups. Biol Trace Elem Res 141(1–3):131–149. doi: 10.1007/s12011-010-8736-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Y, Ou YL, Liu YQ, Xie Q, Liu QF, Wu Q, Fan TQ, Yan LL, Wang JY (2012) Correlations of trace element levels in the diet, blood, urine, and feces in the Chinese male. Biol Trace Elem Res 145(2):127–135. doi: 10.1007/s12011-011-9177-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Afridi HI, Kazi TG, Brabazon D, Naher S (2011) Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects. Sci Total Environ 412-413:93–100. doi: 10.1016/j.scitotenv.2011.09.033 CrossRefPubMedGoogle Scholar
  33. 33.
    Afridi HI, Kazi TG, Kazi AG, Shah F, Wadhwa SK, Kolachi NF, Shah AQ, Baig JA, Kazi N (2011) Levels of arsenic, cadmium, lead, manganese and zinc in biological samples of paralysed steel mill workers with related to controls. Biol Trace Elem Res 144(1–3):164–182. doi: 10.1007/s12011-011-9063-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Klatka M, Blazewicz A, Partyka M, Kollataj W, Zienkiewicz E, Kocjan R (2015) Concentration of selected metals in whole blood, plasma, and urine in short stature and healthy children. Biol Trace Elem Res 166(2):142–148. doi: 10.1007/s12011-015-0262-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Olmedo P, Pla A, Hernandez AF, Lopez-Guarnido O, Rodrigo L, Gil F (2010) Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 659(1–2):60–67. doi: 10.1016/j.aca.2009.11.056 CrossRefPubMedGoogle Scholar
  36. 36.
    Patole SP, Simoes F, Yapici TF, Warsama BH, Anjum DH, Costa PM (2016) An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry. Talanta 148:94–100. doi: 10.1016/j.talanta.2015.10.053 CrossRefPubMedGoogle Scholar
  37. 37.
    Illuminati S, Annibaldi A, Truzzi C, Libani G, Mantini C, Scarponi G (2015) Determination of water-soluble, acid-extractable and inert fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry after sequential extraction and microwave digestion. J Electroanal Chem 755:182–196. doi: 10.1016/j.jelechem.2015.07.023 CrossRefGoogle Scholar
  38. 38.
    Afridi HI, Kazi TG, Talpur FN, Kazi A, Arain SS, Arain SA, Brahman KD, Panhwar AH, Naeemullah, Shezadi M, Ali J (2014) Interaction between essential elements selenium and zinc with cadmium and mercury in samples from hypertensive patients. Biol Trace Elem Res 160(2):185–196. doi: 10.1007/s12011-014-0048-y CrossRefPubMedGoogle Scholar
  39. 39.
    Golasik M, Herman M, Piekoszewski W, Gomółka E, Wodowski G, Walas S (2014) Trace determination of manganese in urine by graphite furnace atomic absorption spectrometry and inductively coupled plasma–mass spectrometry. Anal Lett 47(11):1921–1930. doi: 10.1080/00032719.2014.888729 CrossRefGoogle Scholar
  40. 40.
    Morton J, Leese E, Cotton R, Warren N, Cocker J (2011) Beryllium in urine by ICP-MS: a comparison of low level exposed workers and unexposed persons. Int Arch Occup Environ Health 84(6):697–704. doi: 10.1007/s00420-010-0587-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Mohmand J, Eqani SA, Fasola M, Alamdar A, Mustafa I, Ali N, Liu L, Peng S, Shen H (2015) Human exposure to toxic metals via contaminated dust: bio-accumulation trends and their potential risk estimation. Chemosphere 132:142–151. doi: 10.1016/j.chemosphere.2015.03.004 CrossRefPubMedGoogle Scholar
  42. 42.
    He Y, Miao M, Wu C (2009) Occupational exposure levels of bisphenol A among Chinese workers. J Occup Health 51(5):432–436CrossRefPubMedGoogle Scholar
  43. 43.
    Mari M, Nadal M, Schuhmacher M, Barbería E, García F, Domingo JL (2014) Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol Trace Elem Res 159(1–3):15–21. doi: 10.1007/s12011-014-9957-z CrossRefPubMedGoogle Scholar
  44. 44.
    Wilson K, Kielkowski D, Theodoru P, Naik I (2011) A trace metal survey of non-occupationally exposed gauteng residents. Biol Trace Elem Res 143. doi: 10.1007/s12011-010-8846-3
  45. 45.
    Thorne D, Dalrymple A, Dillon D, Duke M, Meredith C (2015) A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test. Inhal Toxicol 27(12):629–640. doi: 10.3109/08958378.2015.1080773 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacauChina
  2. 2.Shanghai Institute of Occupational Safety and Health (SIOSH)ShanghaiChina

Personalised recommendations