Advertisement

Biological Trace Element Research

, Volume 172, Issue 1, pp 108–119 | Cite as

Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells

  • Syed Husain Mustafa Rizvi
  • Arshiya Parveen
  • Israr Ahmad
  • Iqbal Ahmad
  • Anoop K. Verma
  • Md. Arshad
  • Abbas Ali MahdiEmail author
Article

Abstract

Aluminum is the third most abundant element present in the earth’s crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer’s disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells.

Keywords

ER stress Unfolded protein response Oxidative stress Inflammation 

Notes

Acknowledgments

This work was supported by Indian Council of Medical Research (ICMR) [Project No.45/6/2013 BIO/BMS]. We are grateful to Indian Council of Medical Research (ICMR) for award of fellowship to SHMR.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Karbouj R (2007) Aluminum leaching using chelating agents as compositions of food. Food Chem Toxicol 45:1688–1693CrossRefPubMedGoogle Scholar
  2. 2.
    Pineau A, Fauconneau B, Sappino AP, Deloncle R, Guillard O (2014) If exposure to aluminum in antiperspirants presents health risks, its content should be reduced. J Trace Elem Med Biol 28:147–150CrossRefPubMedGoogle Scholar
  3. 3.
    Reinke CM, Breitkreutz J, Leuenberger H (2003) Aluminum in over the-counter drugs: risks outweigh benefits? Drug Saf 26:1011–1025CrossRefPubMedGoogle Scholar
  4. 4.
    Gura KM (2010) Aluminum contamination in products used in parenteral nutrition: has anything changed? Nutrition 26:585–594CrossRefPubMedGoogle Scholar
  5. 5.
    de Oliveira SR, Bohrer D, Garcia SC, do Nascimento PC, Noremberg S (2010) Aluminum content in intravenous solutions for administration to neonates: role of product preparation and administration methods. J Parenter Enteral Nutr 34:322–328CrossRefGoogle Scholar
  6. 6.
    Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27:385–394CrossRefPubMedGoogle Scholar
  7. 7.
    Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180:511–513CrossRefPubMedGoogle Scholar
  8. 8.
    McDermott JR, Smith AI, Iqbal K, Wisniewski HM (1979) Brain aluminum in aging and Alzheimer disease. Neurology 29:809–814CrossRefPubMedGoogle Scholar
  9. 9.
    Markesbery WR, Ehmann WD, Hossain TI, Alauddin M, Goodin DT (1981) Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging. Ann Neurol 10:511–516CrossRefPubMedGoogle Scholar
  10. 10.
    Shimizu H, Mori T, Koama M, Sekiya M, Ooami H (1994) A correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects. Nihon Ronen Igakkai Zasshi 31:950–960CrossRefPubMedGoogle Scholar
  11. 11.
    Rusina R, Matej R, Kasparova L, Kukal J, Urban P (2011) Higher aluminum concentrations in Alzheimer’s disease after Box-Cox data transformation. Neurotox Res 20:329–333CrossRefPubMedGoogle Scholar
  12. 12.
    Walton JR (2009) Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer’s disease. Neurotoxicology 30:1059–1069CrossRefPubMedGoogle Scholar
  13. 13.
    Levy R, Shohat L, Solomon B (1998) Specificity of an anti aluminum monoclonal antibody toward free and protein bound aluminum. J Inorg Biochem 69:159–163CrossRefPubMedGoogle Scholar
  14. 14.
    Trapp GA (1978) Aluminum levels in brain in Alzheimer’s disease. Biol Psychiatry 13:709–718PubMedGoogle Scholar
  15. 15.
    Yoshimasu F, Yasui M, Yoshida H, Yoshida S, Labayashi Y, Yase Y, Gadjusek DC, Chen K (1985) Aluminum in Alzheimer’s disease in Japan and parkinsonism-dementia in Guam. XII World Congress of Neurology, Hamburg, Abstract. 15-07-02 Google Scholar
  16. 16.
    Xu N, Majidi V, Markesbery WR, Ehmann WD (1992) Brain aluminum in Alzheimer’s disease using an improved GFAAS method. Neurotoxicology 13:735–743PubMedGoogle Scholar
  17. 17.
    Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154CrossRefPubMedGoogle Scholar
  18. 18.
    Andr’asi E, P’ali N, Moln’ar Z, K¨osel S (2005) Brain Al, Mg and P contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7:273–284Google Scholar
  19. 19.
    Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299CrossRefPubMedGoogle Scholar
  20. 20.
    Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe LAMMA study. Ann Neurol 31:286–292CrossRefPubMedGoogle Scholar
  21. 21.
    Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome, possible aluminum intoxication. N Engl J Med 294:184–188CrossRefPubMedGoogle Scholar
  22. 22.
    Itoh M, Suzuki Y, Sugai K, Kozuka N, Ohsawa M, Otsuki T, Goto Y (2008) Progressive leukoencephalopathy associated with aluminum deposits in myelin sheath. J Child Neurol 23:938–943CrossRefPubMedGoogle Scholar
  23. 23.
    Exley C, Vickers T (2014) Elevated brain aluminum and early onset Alzheimer’s disease in an individual occupationally exposed to aluminum: a case report. J Med Case Rep 8:41. doi: 10.1186/1752-1947-8-41 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Belojević G, Jakovljević B (1998) Aluminum and Alzheimer’s disease. Srp Arh Celok Lek 126:283–289PubMedGoogle Scholar
  26. 26.
    Nishida Y (2003) Elucidation of endemic neurodegenerative diseases—a commentary. Z Naturforsch C 58:752–758CrossRefPubMedGoogle Scholar
  27. 27.
    Mandour RA, Azab YA (2011) The prospective toxic effects of some heavy metals overload in surface drinking water of Dakahlia Governorate, Egypt. Int J Occup Environ Med 4:245–253Google Scholar
  28. 28.
    McLachlan DRC, Bergeron C, Smith JE, Boomer D, Rifat SL (1996) Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories. Neurology 46:401–405CrossRefPubMedGoogle Scholar
  29. 29.
    Flaten TP (2001) Aluminum as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55:187–196CrossRefPubMedGoogle Scholar
  30. 30.
    Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer-Verlag, New YorkCrossRefGoogle Scholar
  31. 31.
    Martin RB (1994) Aluminum: a neurotoxic product of acid rain. Acc Chem Res 27:204–210. doi: 10.1021/ar00043a004 CrossRefGoogle Scholar
  32. 32.
    Giorgianni CM, D’Arrigo G, Brecciaroli R, Abbate A, Spatari G, Tringali MA, Gangemi S, De Luca A (2012) Neurocognitive effects in welders exposed to aluminum. Toxicol Ind Health 30:347–356CrossRefPubMedGoogle Scholar
  33. 33.
    Tripathi S, Mahdi AA, Nawab A, Chander R, Hasan M, Siddiqui MS, Mahdi F, Mitra K, Bajpai VK (2009) Influence of age on aluminum induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: a behavioral, biochemical and ultrastructural study. Brain Res 1253:107–116CrossRefPubMedGoogle Scholar
  34. 34.
    Tomljenovic L, Shaw CA (2012) Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 21:223–230CrossRefPubMedGoogle Scholar
  35. 35.
    Couette M, Boisse MF, Maison P, Brugieres P, Cesaro P, Chevalier X, Gherardi RK, Bachoud-Levi AC, Authier FJ (2009) Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem 103:1571–1578CrossRefPubMedGoogle Scholar
  36. 36.
    Guillard O, Fauconneau B, Pineau A, Marrauld A, Bellocq JP, Chenard MP (2012) Aluminum overload after 5 years in skin biopsy following post-vaccination with subcutaneous pseudolymphoma. J Trace Elem Med Biol 264:291–293CrossRefGoogle Scholar
  37. 37.
    Shirabe T, Irie K, Uchida M (2002) Autopsy case of aluminum encephalopathy. Neuropathology 22:206–210CrossRefPubMedGoogle Scholar
  38. 38.
    Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565–572CrossRefPubMedGoogle Scholar
  39. 39.
    Tsunoda M, Sharma RP (1999) Modulation of tumor necrosis factor alpha expression in mouse brain after exposure to aluminum in drinking water. Arch Toxicol 73:419–426CrossRefPubMedGoogle Scholar
  40. 40.
    Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, O’Hagan D, Rappuoli R, De Gregorio E (2008) Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci U S A 105:10501–10506CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Franchi L, Núñez G (2008) The NLRP3 inflammasome is critical for alum mediated IL-1β secretion but dispensable for adjuvant activity. Eur J Immunol 38:2085–2089CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts mediate NALP-3 inflammasome activation via phagosomal destabilization. Nat Immunol 9:847–856CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J Immunol 178:5271–5276CrossRefPubMedGoogle Scholar
  44. 44.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733CrossRefPubMedGoogle Scholar
  45. 45.
    Samson Y, Lapergue B, Hossein H (2005) Inflammation and ischemic stroke current status and future perspectives. Rev Neurol 161:1177–1182CrossRefPubMedGoogle Scholar
  46. 46.
    Baumann O, Walz B (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 205:149–214CrossRefPubMedGoogle Scholar
  47. 47.
    Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418CrossRefPubMedGoogle Scholar
  48. 48.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789CrossRefPubMedGoogle Scholar
  49. 49.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529CrossRefPubMedGoogle Scholar
  50. 50.
    Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279CrossRefPubMedGoogle Scholar
  51. 51.
    Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375CrossRefPubMedGoogle Scholar
  52. 52.
    Bailey D, O’Hare P (2007) Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal 9:2305–2321CrossRefPubMedGoogle Scholar
  53. 53.
    Hotamisligil GS (2005) Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78CrossRefPubMedGoogle Scholar
  54. 54.
    Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674CrossRefPubMedGoogle Scholar
  55. 55.
    Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW (2006) HMGB1 a novel cytokine like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421CrossRefPubMedGoogle Scholar
  56. 56.
    Kim JB, Lim CM, Yu YM, Lee JK (2008) Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res 86:1125–1131CrossRefPubMedGoogle Scholar
  57. 57.
    Mustafa Rizvi SH, Parveen A, Verma AK, Ahmad I, Arshad M et al (2014) Aluminum induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS ONE 9(5):e98409CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bertholf RL, Herman MM, Savory J, Carpenter RM, Sturgill BC, Katsetos CD et al (1989) A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal, and neuronal cytoskeletal changes associated with systemic exposure. Toxicol Appl Pharmacol 15:58–74CrossRefGoogle Scholar
  59. 59.
    Johnson VJ, Kim SH, Sharma RP (2005) Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol Sci 83:329–339CrossRefPubMedGoogle Scholar
  60. 60.
    Borenfreund E, Puerner JA (1985) Toxicity determination in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124CrossRefPubMedGoogle Scholar
  61. 61.
    Wan CP, Myung E, Lau BH (1993) An automated microfluorometric assay for monitoring oxidative burst activity of phagocytes. J Immunol Methods 159:131–138CrossRefPubMedGoogle Scholar
  62. 62.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  63. 63.
    Aebi H (1984) Catalase in vitro. In: Packer, L. (Ed.), Methods in enzymology. Academic Press, New York. 105:121-126.Google Scholar
  64. 64.
    Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32:1797–1806PubMedGoogle Scholar
  65. 65.
    Noritsugu K, Hiroyuki Y, Jitsuya T, Keiji S, Hiromu S (2004) Orally administrated aluminum–maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98:2022–2031CrossRefGoogle Scholar
  66. 66.
    Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253PubMedGoogle Scholar
  67. 67.
    Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer’s disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65:348–357CrossRefPubMedGoogle Scholar
  69. 69.
    Parveen A, Rizvi SHM, Mahdi F, Tripathi S, Ahmad I, Mahdi AA et al (2014) Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress. J Nanoparticle Res 16:2664CrossRefGoogle Scholar
  70. 70.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kaser A, Blumberg RS (2009) Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol 21:156–163CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18:589–598CrossRefPubMedGoogle Scholar
  73. 73.
    Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lin JH, Walter P, Yen TSB (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ignatowski TA, Wright JR, Gorfien JL, Heffner RR, Spengler RN (1997) Neuronal-associated tumor necrosis factor (TNFα): its role in noradrenergic functioning and modification of its expression following antidepressant drug administration. J Neuroimmunol 79:84–90CrossRefPubMedGoogle Scholar
  76. 76.
    Downen M, Amaral TD, Hua LL, Zhao ML, Lee SC (1999) Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia 28:114–127CrossRefPubMedGoogle Scholar
  77. 77.
    Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 90:10061–10065CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci U S A 94:1500–1505CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740CrossRefPubMedGoogle Scholar
  81. 81.
    Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 7(6):e39586CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shi K, Wang D, Cao X, Ge Y (2013) Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway. PLoS One 8(3):e59330CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP (2010) Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 30:16938–16948CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Syed Husain Mustafa Rizvi
    • 1
  • Arshiya Parveen
    • 1
  • Israr Ahmad
    • 1
  • Iqbal Ahmad
    • 2
  • Anoop K. Verma
    • 1
  • Md. Arshad
    • 3
  • Abbas Ali Mahdi
    • 1
    Email author
  1. 1.Department of Biochemistry and Forensic Medicine & ToxicologyKing George’s Medical UniversityLucknowIndia
  2. 2.Fibre Toxicology DivisionCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  3. 3.Department of ZoologyLucknow UniversityLucknowIndia

Personalised recommendations