Advertisement

Biological Trace Element Research

, Volume 170, Issue 2, pp 288–293 | Cite as

Effects of Imbalance in Trace Element on Thyroid Gland from Moroccan Children

  • Sana El-Fadeli
  • Sabir Bouhouch
  • Anatoly V. Skalny
  • Yassir Barkouch
  • Alain Pineau
  • Mohamed Cherkaoui
  • Azeddine Sedki
Article

Abstract

The major environmental factor that determines goiter prevalence is iodine status. However, other trace elements like selenium and zinc can influence the thyroid function. Hair samples (n = 68) were collected from goitrous and non-goitrous children aged 8–12 years living in the area of Al Haouz Marrakech-(Morocco). Trace element concentrations (Cr, Fe, Mg, Zn, Se, I) in hair were measured using flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, and inductively coupled plasma mass spectrometry. Difference in the mean concentration of each trace element between groups was determined by ANOVA test. The mean concentration levels of I, Se, and Zn for goitrous children were lower and were similar to the mean concentrations reported in the literature for subjects with goiter. The regression results gave us a better model that revealed significant positive relations between thyroid volume and Zn contents and significant negative relation with I and Se. The overall findings of the present study revealed that the actual factors of thyroid gland volume increase are I and Se deficiency. This work could shed some light on the effects of trace elements—other than iodine—on the thyroid disorders.

Keywords

Trace elements Goitrous children Iodine Selenium Zinc 

References

  1. 1.
    WHO/UNICEF/ICCIDD (1994) Indicators for assessing iodine deficiency disorders and their control through salt iodinization. WHO/NUT.Google Scholar
  2. 2.
    Delange F (1994) The disorders induced by iodine deficiency. Thyroid 4:107–128CrossRefPubMedGoogle Scholar
  3. 3.
    Vitti P, Delange F, Pinchera A, Zimmermann M, Dunn JT (2003) Europe is iodine deficient. Lancet 361:1226CrossRefPubMedGoogle Scholar
  4. 4.
    Gorbachev AL, Skalny AV, Koubassov RV (2007) Bioelement effects on thyroid gland in children living in iodine-adequate territory. J Trace Elem Med Bio 21:56–58CrossRefGoogle Scholar
  5. 5.
    Aquaron R, Zarrouck K, El Jarari M, Ababou R, Talibi A, Ardissone JP (1993) Endemic goiter in Morocco (Koura-Toundoute areas in the high atlas). J Endocrinol Investig 16:9–14CrossRefGoogle Scholar
  6. 6.
    Kadiri A, Chraibi A, Gharbi MH, Naji A, Farissi Z, Nassiri N, Akalay O, Chaouki N (1993) Le goître endémique. Enquête-pilote au maroc (the endemic goitre. A pilot investigation in morocco). Rev Fr Endocrinol Clin 34:651–655Google Scholar
  7. 7.
    Tajdine MT, Lamrani M, Serhane K, Achour A, Benariba F, Daali M (2005) Les goitres multihétéronodulaires plongeants: à propos de 100 cas marocains. Cah Etud Rech Franco 15:247–252Google Scholar
  8. 8.
    Bousliman Y, EL Jaoudi R, Zahidi A, Oulad Bouyahya IM, Draoui M, Abouqal R, Taoufik J (2011) Consommation du sel iodé et la prévalence du goitre chez les enfants d’âge scolaire dans la province de Larache. Maroc, Med MaghrebGoogle Scholar
  9. 9.
    Chaouki N, Ottmani S, Saad A, Hamdaoui ME, Benabdejlil C, Kadiri A, Abadou R, Mahjour J (1996) Etude de la prévalence des troubles dus à la carence iodée chez les enfants âgés de 6 à 12 ans au maroc. Bull Epidémiol 7:1–19Google Scholar
  10. 10.
    WHO (2001) Assessment of iodine deficiency disorders and monitoring their elimination, a guide for programme managers. Organisation Mondiale de la Santé. Genève. Suisse. http://www.who.int/nutrition/publications/en/idd_assessment_monitoring_eliminintion.pdf (accessed on 08/02/2015)
  11. 11.
    FAO (2011) Profil Nutritionnel du Maroc - Division de la nutrition et de la protection des consommateurs. ftp://ftp.fao.org/ag/agn/nutrition/ncp/mar.pdf (accessed on 20/06./2015)
  12. 12.
    Man CK, Zheng YH (2002) Analysis of trace elements in scalp hair of mentally retarded children. J Radioanal Nucl Ch 253:375–377CrossRefGoogle Scholar
  13. 13.
    Momcilovic B, Prejac J, Visnjevic V, Skalnaya MG, Mimica N, Drmic S, Skalny AV (2014) Hair iodine for human iodine status assessment. Thyroid 24:1018–1026CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Raposo JC, Navarro P, Sarmiento A, Arribas E, Irazola M, Alonso RM (2014) Analytical proposal for trace element determination in human hair. Application to the Biscay province population, northern Spain. Microchem J 116:125–134CrossRefGoogle Scholar
  15. 15.
    Golasik M, Przybyłowicz A, Woźniak A, Herman M, Gawęcki W, Golusiński W, Walas S, Krejpcio Z, Szyfter K, Florek E, Piekoszewsk W (2015) Essential metals profile of the hair and nails of patients with laryngeal cancer. J Trace Elem Med Bio 31:67–73CrossRefGoogle Scholar
  16. 16.
    Sahoo SK, Žunić ZS, Kritsananuwat R, Zagrodzki P, Bossew P, Veselinovic N, Mishra S, Yonehara H, Tokonami S (2015) Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe). J Environ Radioactiv 145:66–77CrossRefGoogle Scholar
  17. 17.
    Morton J, Carolan VA, Gardiner PHE (2002) Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chim Acta 455:23–34CrossRefGoogle Scholar
  18. 18.
    Brown AC, Crounse RC (1980) Hair trace elements and human illness. Praeger Publishers, New YorkGoogle Scholar
  19. 19.
    Passwater RA, Cranton EM (1983) Trace elements, hair analysis and nutrition. CT. Keats Publishing, New CanaanGoogle Scholar
  20. 20.
    Peereboom JWC, Hamilton EI (1985) Trace elements, human health and hair analysis. Sci Total Environ 42Google Scholar
  21. 21.
    Katz SA, Chatt A (1988) The significance of hair analysis: applications in the biomedical and environmental sciences. VCH Publishers, New York, NY, pp. 105–109Google Scholar
  22. 22.
    Miekeley N, Dias Carneiro MTW, Silveira CL (1998) How reliable are human hair reference intervals for trace elements? Sci Total Environ 218:9–17CrossRefPubMedGoogle Scholar
  23. 23.
    Díez S, Delgado S, Aguilera I, Astray J, Pérez-Gómez B, Torrent M, Sunyer J, Bayona JM (2009) Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. Arch Environ Contam Toxicol 56:615–622CrossRefPubMedGoogle Scholar
  24. 24.
    El-Fadeli S, Chaik M, Pineau A, Lekouch N, Sedki A (2012) Determination of trace elements in human hair: optimization of washing procedure with a product of traditional pharmacopeia in Morocco “Rhassoul”. Trace Elem Electroly 29:22–27CrossRefGoogle Scholar
  25. 25.
    Nechay MW, Sunderman Jr FW (1973) Measurements of nickel in hair by atomic absorption spectrometry. Ann Clin Lab Sci 3:30–35PubMedGoogle Scholar
  26. 26.
    Lekouch N, Sedki A, Bouhouch S, Nejmeddine A, Pineau A, Pihan JC (1999) Trace elements in children’s hair, as related exposure in wastewater spreading field of Marrakesh (Morocco). Sci Total Environ 15:323–328CrossRefGoogle Scholar
  27. 27.
    Foo SC, Khoo NY, Heng A, Chua LH, Chia SE, Ong CN, Ngim CH, Jeyaratnam J (1993) Metals in hair as biological indices for exposure. Int Arch Occup Environ Health 65:83–86CrossRefGoogle Scholar
  28. 28.
    Ersoy B, Gunes HS, Gunay T, Yilmaz O, Kasirga E, Egemen A (2006) Interaction of two public health problems in Turkish schoolchildren: nutritional deficiencies and goiter. Public Health Nutr 9:1001–1006CrossRefPubMedGoogle Scholar
  29. 29.
    Wolka E, Shiferaw S, Biadgilign S (2014) Epidemiological study of risk factors for goiter among primary schoolchildren in southern Ethiopia. Food and Nutr Bull 35:20–27CrossRefGoogle Scholar
  30. 30.
    Manjunath B, Suman G, Hemanth T, Shivaraj NS, Murthy NS (2015) Prevalence and factors associated with goitre among 6–12-year-old children in a rural area of Karnataka in south India. Biol Trace Elem Res p 1-5Google Scholar
  31. 31.
    Grabeklis AR, Lakarova EV, Eisazadeh S, Skalny AV (2011) Sex dependent peculiarities of some important chemical element ratios in hair of schoolchildren. Trace Elem Electroly 28:88–90CrossRefGoogle Scholar
  32. 32.
    WHO (2006) “BMI Classification". Global Database on Body Mass Index. World Health Organization. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 13/07/2015)
  33. 33.
    Sanjari M, Gholamhoseinian A, Nakhaee A (2014) The association between cobalt deficiency and endemic goiter in school-aged children. Endocrinol Metab 29:307–311CrossRefGoogle Scholar
  34. 34.
    Zakrgynska-Fontaine V, Doré JC, Ojasoo T, Poirier-Duchiêne F, Viel C (1998) Study of the age and sex dependence of trace elements in hair by correspondence analysis. Biol Trace Elem Res 61:151–168CrossRefPubMedGoogle Scholar
  35. 35.
    Zaida F, Chadrame S, Sedki A, Lekouch N, Bureau F, Arhan P, Bouglé D (2007) Lead and aluminium levels in infants’ hair, diet, and the local environment in the Moroccan city of Marrakech. Sci Total Environ 377:152–158CrossRefPubMedGoogle Scholar
  36. 36.
    Rebacz E, Baranowska-Bosiacka I, Chlubek D (2010) The content of selected chemical elements in the hair of young men of the Bantu language group from Tanzania versus environmental and social conditioning. Biol Trace Elem Res 137:262–279CrossRefPubMedGoogle Scholar
  37. 37.
    Mikulewicz M, Chojnacka K, Gedrange T, Górecki H (2013) Reference values of elements in human hair: a systematic review. Environ Toxicol Pharmacol 36:1077–1086CrossRefPubMedGoogle Scholar
  38. 38.
    Varrica D, Tamburo E, Dongarrà G, Sposito F (2014) Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy). Sci Total Environ 470-471:117–126CrossRefPubMedGoogle Scholar
  39. 39.
    Çelik T, Savaş N, Kurtoğlu S, Sangün Ö, Aydın Z, Mustafa D, Öztürk OH, Mısırlıoğlu S, Öktem M (2014) Iodine, copper, zinc, selenium and molybdenum levels in children aged between 6 and 12 years in the rural area with iodine deficiency and in the city center without iodine deficiency in Hatay. Türk Ped Arş 49:111–116CrossRefGoogle Scholar
  40. 40.
    Zimmermann MB, Boelaert K (2015) Iodine deficiency and thyroid disorders. Lancet Diabetes & Endocrin 3:286–295CrossRefGoogle Scholar
  41. 41.
    Sanjari M, Gholamhoseinian A, Nakhaee A (2012) Serum zinc levels and goiter in Iranian school children. J Trace Elem Med Bio 26:42–45CrossRefGoogle Scholar
  42. 42.
    Hetzel HS, Maberly GF (1986) Iodine. In: Mertz W (ed) Trace elements in human and animal nutrition. Academic Press, London, pp. 139–197CrossRefGoogle Scholar
  43. 43.
    Arthur JR, Beckett GT (1994) New metabolic roles for selenium. Proc Nutr Soc 53:615–624CrossRefPubMedGoogle Scholar
  44. 44.
    Mumtaz A, Ullah MI, Atif M, Sami W (2014) Determination of serum zinc and magnesium levels in patients with hypothyroidism. Trace Elem Electroly 31:43–47Google Scholar
  45. 45.
    Sharma R, Bharti S, Hari Kumar KVS (2014) Diet and thyroid—myths and facts. J Med Nutr Nutraceut 3: 60–65.Google Scholar
  46. 46.
    Chojnacka K, Gorecka H, Chojnacki A, Gorecki H (2005) Inter-element interactions in human hair. Environ Toxicol Phar 20:368–374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sana El-Fadeli
    • 1
  • Sabir Bouhouch
    • 2
  • Anatoly V. Skalny
    • 3
    • 4
  • Yassir Barkouch
    • 5
  • Alain Pineau
    • 6
  • Mohamed Cherkaoui
    • 2
  • Azeddine Sedki
    • 1
  1. 1.Laboratory of Hydrobiology, Ecotoxicology and SanitationMarrakechMorocco
  2. 2.Laboratory of Human EcologyMarrakechMorocco
  3. 3.P.G.Demidov Yaroslavl State UniversityYaroslavlRussia
  4. 4.Trace Element – Insitute for UNESCOLyonFrance
  5. 5.Regional Laboratory of Epidemiological Diagnosis and Environmental HealthMarrakechMorocco
  6. 6.Laboratory of Toxicology and Industrial HygieneNantesFrance

Personalised recommendations