Biological Trace Element Research

, Volume 169, Issue 2, pp 159–163

Trace Element Changes in Thoracic Aortic Dissection

  • Marie Edvinsson
  • Nils-Gunnar Ilbäck
  • Peter Frisk
  • Stefan Thelin
  • Christina Nyström-Rosander


Thoracic aortic dissection is a life-threatening condition with an incompletely understood pathogenesis. Trace elements are essential for the functioning of different processes in the body, including the immune system and associated responses to infection/inflammation. Because inflammation may be part of the pathogenesis of thoracic aortic dissection, we investigated whether trace element changes associated with inflammation occur in serum and tissue samples during the disease. The study included 21 patients undergoing surgery for thoracic aortic dissection, 10 forensic autopsy specimens for tissue controls and 23 healthy blood donors for serum controls. Levels of magnesium (Mg), calcium (Ca), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd) and mercury (Hg) were measured in the aortic tissue and serum by inductively coupled plasma-mass spectrometry (ICP-MS). In the serum, Ca, V, Cu and Zn decreased, whereas Fe increased. In the tissue, Cu and Zn decreased and Fe tended to increase. The Cu/Zn ratio in the serum, a marker of infection/inflammation, did not change in the patients. Concerning trace element changes in the serum and tissue, our data do not support the hypothesis that inflammation is involved in the pathogenesis of thoracic aortic dissection.


Aortic dissection Inflammation Copper Zinc Iron 


  1. 1.
    Ramanath VS, Oh JK, Sundt 3rd TM, Eagle KA (2009) Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc 84:465–481PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Halperin J.L., Olin JW (2005) Diseases of the aorta. in: A.R.W. Fuster V., O’Rourke R. A., Roberts R. (ed) Hurst’s The Heart, ^A.R.W. Fuster V., O’Rourke R. A., Roberts R.|. |, Publisher|: City|. p. Pages|Google Scholar
  3. 3.
    Mukherjee D, Eagle KA (2005) Aortic dissection—an update. Curr Probl Cardiol 30:287–325PubMedCrossRefGoogle Scholar
  4. 4.
    Weis-Muller BT, Modlich O, Drobinskaya I, Unay D, Huber R, Bojar H, Schipke JD, Feindt P, Gams E, Muller W, Goecke T, Sandmann W (2006) Gene expression in acute Stanford type A dissection: a comparative microarray study. J Transl Med 4:29PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  6. 6.
    Mattila KJ, Valtonen VV, Nieminen MS, Asikainen S (1998) Role of infection as a risk factor for atherosclerosis, myocardial infarction, and stroke. Clin Infect Dis 26:719–734PubMedCrossRefGoogle Scholar
  7. 7.
    Grayston JT (2000) Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 181(Suppl 3):S402–S410PubMedCrossRefGoogle Scholar
  8. 8.
    Leinonen MSaikku P (2002) Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis 2:11–17CrossRefGoogle Scholar
  9. 9.
    Edvinsson M, Hjelm E, Thelin S, Friman G, Nystrom-Rosander C (2010) Presence of Chlamydophila pneumoniae DNA but not mRNA in stenotic aortic heart valves. Int J Cardiol 143:57–62PubMedCrossRefGoogle Scholar
  10. 10.
    Nystrom-Rosander C, Lindh U, Ilback NG, Hjelm E, Thelin S, Lindqvist O, Friman G (2003) Interactions between Chlamydia pneumoniae and trace elements: a possible link to aortic valve sclerosis. Biol Trace Elem Res 91:97–110PubMedCrossRefGoogle Scholar
  11. 11.
    Edvinsson M, Thelin S, Hjelm E, Friman G, Nystrom-Rosander C (2010) Persistent Chlamydophila pneumoniae infection in thoracic aortic aneurysm and aortic dissection? Ups J Med Sci 115:181–186PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nystrom-Rosander C, Hjelm E, Lukinius A, Friman G, Eriksson L, Thelin S (2002) Chlamydia pneumoniae in patients undergoing surgery for thoracic aortic disease. Scand Cardiovasc J 36:329–335PubMedCrossRefGoogle Scholar
  13. 13.
    Nystrom-Rosander C, Frisk P, Edvinsson M, Hjelm E, Thelin S, Friman G, Ilback NG (2009) Thoracic aortic aneurysm patients with Chlamydophila pneumoniae infection showed a shift in trace element levels in serum and diseased aortic tissue. J Trace Elem Med Biol 23:100–106PubMedCrossRefGoogle Scholar
  14. 14.
    Pekarek S, Engelhardt J (1981) Infection-induced alterations in trace metal metabolism: relationship to organism virulence and host defense. in: E.J. Pekarek RS (ed) Infection: The physiologic and metabolic responses of the host., ^E.J. Pekarek RS|. |, Publisher|: City|. p. Pages|.Google Scholar
  15. 15.
    Ilback NG, Friman G (2007) Interactions among infections, nutrients and xenobiotics. Crit Rev Food Sci Nutr 47:499–519PubMedCrossRefGoogle Scholar
  16. 16.
    Edvinsson M, Frisk P, Molin Y, Hjelm E, Ilback NG (2008) Trace element balance is changed in infected organs during acute Chlamydophila pneumoniae infection in mice. Biometals 21:229–237PubMedCrossRefGoogle Scholar
  17. 17.
    Granadillo VA, Tahan JE, Salgado O, Elejalde LE, Rodriguez-Iturbe B, Romero GB, Romero RA (1995) The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension. Clin Chim Acta 233:47–59PubMedCrossRefGoogle Scholar
  18. 18.
    Juvonen J, Juvonen T, Laurila A, Alakarppa H, Lounatmaa K, Surcel HM, Leinonen M, Kairaluoma MI, Saikku P (1997) Demonstration of Chlamydia pneumoniae in the walls of abdominal aortic aneurysms. J Vasc Surg 25:499–505PubMedCrossRefGoogle Scholar
  19. 19.
    Karlsson L, Gnarpe J, Naas J, Olsson G, Lindholm J, Steen B, Gnarpe H (2000) Detection of viable Chlamydia pneumoniae in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 19:630–635PubMedCrossRefGoogle Scholar
  20. 20.
    Kojima S, Suwa S, Fujiwara Y, Inoue K, Mineda Y, Ohta H, Tokano T, Nakata Y (2001) Incidence and severity of coronary artery disease in patients with acute aortic dissection: comparison with abdominal aortic aneurysm and arteriosclerosis obliterans. J Cardiol 37:165–171PubMedGoogle Scholar
  21. 21.
    Kok FJ, Van Duijn CM, Hofman A, Van der Voet GB, De Wolff FA, Paays CH, Valkenburg HA (1988) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am J Epidemiol 128:352–359PubMedGoogle Scholar
  22. 22.
    Reunanen A, Knekt P, Aaran RK (1992) Serum ceruloplasmin level and the risk of myocardial infarction and stroke. Am J Epidemiol 136:1082–1090PubMedGoogle Scholar
  23. 23.
    Reunanen A, Knekt P, Marniemi J, Maki J, Maatela J, Aromaa A (1996) Serum calcium, magnesium, copper and zinc and risk of cardiovascular death. Eur J Clin Nutr 50:431–437PubMedGoogle Scholar
  24. 24.
    Kazemi-Bajestani SM, Ghayour-Mobarhan M, Ebrahimi M, Moohebati M, Esmaeili HA, Parizadeh MR, Aghacizadeh R, Ferns GA (2007) Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. J Trace Elem Med Biol 21:22–28PubMedCrossRefGoogle Scholar
  25. 25.
    Islamoglu Y, Evliyaoglu O, Tekbas E, Cil H, Elbey MA, Atilgan Z, Kaya H, Bilik Z, Akyuz A, Alan S (2011) The relationship between serum levels of Zn and Cu and severity of coronary atherosclerosis. Biol Trace Elem Res 144:436–444PubMedCrossRefGoogle Scholar
  26. 26.
    Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285PubMedCrossRefGoogle Scholar
  27. 27.
    Han M, Lin Z, Zhang Y (2013) The alteration of copper homeostasis in inflammation induced by lipopolysaccharides. Biol Trace Elem Res 154:268–274PubMedCrossRefGoogle Scholar
  28. 28.
    Mertens K, Lowes DA, Webster NR, Talib J, Hall L, Davies MJ, Beattie JH, Galley HF (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth 114:990–999PubMedCrossRefGoogle Scholar
  29. 29.
    Reina de la Torre ML, Navarro-Alarcon M, del Moral LM, Lopez GSH, Palomares-Bayo M, Oliveras Lopez MJ, Blanca Herrera RM, Agil A (2014) Serum Zn levels and Cu/Zn ratios worsen in hemodialysis patients, implying increased cardiovascular risk: a 2-year longitudinal study. Biol Trace Elem Res 158:129–135PubMedCrossRefGoogle Scholar
  30. 30.
    Barrera R, Schattner M, Gabovich N, Zhang J, Saeed M, Genao A, Khvatyuk O, Simon N, Sepkowitz K (2003) Bacteremic episodes and copper/zinc ratio in patients receiving home parenteral nutrition. Nutr Clin Pract 18:529–532PubMedCrossRefGoogle Scholar
  31. 31.
    Yuan XM, Li W (2003) The iron hypothesis of atherosclerosis and its clinical impact. Ann Med 35:578–591PubMedCrossRefGoogle Scholar
  32. 32.
    Sullivan JL, Weinberg ED (1999) Iron and the role of Chlamydia pneumoniae in heart disease. Emerg Infect Dis 5:724–726PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shah SV, Alam MG (2003) Role of iron in atherosclerosis. Am J Kidney Dis 41:S80–S83PubMedCrossRefGoogle Scholar
  34. 34.
    Nystrom-Rosander C, Lindh U, Friman G, Lindqvist O, Thelin S, Ilback NG (2004) Trace element changes in sclerotic heart valves from patients are expressed in their blood. Biometals 17:121–128PubMedCrossRefGoogle Scholar
  35. 35.
    Nystrom-Rosander C, Lindh U, Thelin S, Lindquist O, Friman G, Ilback NG (2002) Trace element changes in sclerotic heart valves from patients undergoing aortic valve surgery. Biol Trace Elem Res 88:9–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marie Edvinsson
    • 1
  • Nils-Gunnar Ilbäck
    • 1
    • 4
  • Peter Frisk
    • 3
  • Stefan Thelin
    • 2
  • Christina Nyström-Rosander
    • 1
  1. 1.Department of Medical Sciences, Infectious DiseasesUppsala University, University HospitalUppsalaSweden
  2. 2.Department of Surgical Sciences, Thoracic SurgeryUppsala UniversityUppsalaSweden
  3. 3.Research in Metal Biology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
  4. 4.Risk Benefit Assessment DepartmentNational Food AgencyUppsalaSweden

Personalised recommendations