Biological Trace Element Research

, Volume 168, Issue 2, pp 321–329 | Cite as

Comparative Study of Serum Copper, Iron, Magnesium, and Zinc in Type 2 Diabetes-Associated Proteinuria

  • Farah Aziz Khan
  • Noura Al Jameil
  • Sadia Arjumand
  • Mohammad Fareed Khan
  • Hajera Tabassum
  • Naif Alenzi
  • Sereen Hijazy
  • Samyah Alenzi
  • Sahar Subaie
  • Sabiha Fatima
Article

Abstract

Trace element (TE) disturbances are well noted in type 2 diabetes mellitus (T2DM) and its associated complications. In present study, the effect of proteinuria on serum copper (Cu), iron (Fe), magnesium (Mg), and zinc (Zn) in T2DM patients with and without proteinuria was seen. Total subjects were aged between 30 and 90 years; 73 had proteinuria, 76 had T2DM with proteinuria, 76 had T2DM, and 75 were controls. Serum Cu(II), Fe(III), Mg(II), and Zn(II) were assayed by inductively coupled plasma optical emission spectrometer (ICP-OES). Urinary albumin estimation was performed by turbidimetric method. Other biochemical parameters were analyzed by ROCHE Module COBAS 6000 analyzer. Statistical analysis was performed using analysis of variance (ANOVA) at P < 0.0001 followed by t test. Pearson correlation was applied to estimate the effect of proteinuria on TE. Serum Cu(II) level was increased in T2DM patients with proteinuria while Fe(III) was found elevated in T2DM (P < 0.0001) compared to control groups. Zn(II) and Mg(II) were significantly low in proteinuria, T2DM with proteinuria, and T2DM (P < 0.0001) compare to controls. Serum Cu(II) showed strong positive association with albumin creatinine ratio (ACR) in T2DM with proteinuria group and T2DM group (P < 0.01). Fe(III) was positively and Zn(II) was negatively associated with ACR at P < 0.10, in T2DM with proteinuria group. Mg(II) was negatively linked with ACR P < 0.01 in proteinuria, T2DM with proteinuria, and T2DM group. TE were observed more disturbed in T2DM with proteinuria group, thus considered to be the part of T2DM routine checkup and restricts the disease towards its progression.

Keywords

Proteinuria Diabetes Trace elements Albumin Creatinine 

Notes

Acknowledgments

The authors are thankful to be supported by the research center, “Center of Female Scientific and Medical Colleges,” Deanship of Scientific Research, King Saud University, Riyadh, KSA.

References

  1. 1.
    World Health Organization (2013) Diabetes, fact sheet 312. http://www.who.int/mediacentre/factsheets/fs312/en/
  2. 2.
    International Diabetes Federation (2013) The IDF diabetes atlas, 6th edn. International Diabetes Federation, Brussels, BelgiumGoogle Scholar
  3. 3.
    Koda-Kimble MA, Carlisle BA (1995) Diabetes mellitus. In: Young LY, Koda-Kimble MA, Kradjan WA, Guglielmo BJ (eds) Applied therapeutics: the clinical use of drugs, 6th edn. Applied Therapeutics, Inc, Vancouver (WA), pp 481–485Google Scholar
  4. 4.
    Friederich M, Hansell P, Palm F (2009) Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev 5:120–144CrossRefPubMedGoogle Scholar
  5. 5.
    Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21:589–598PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Larsen GL, Henson PM (1983) Mediators of inflammation. Annu Rev Immunol 1:335–359CrossRefPubMedGoogle Scholar
  7. 7.
    Deshpande AD, Hayes MH, Schootmann M (2008) Epidemiology of diabetes and diabetes related complications. Phys Ther 88(11):1254–1264PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Narayan KM, Boyle JP, Giess LS (2006) Impact of recent increase in incidence on future diabetes burden. U.S. 2005–2050. Diabetes Care 29:2114–2116CrossRefPubMedGoogle Scholar
  9. 9.
    Gall MA, Hougaard P, Borch JK, Parving HH (1997) Risk factors for development of incipient and overt diabetic nephropathy in patients with non insulin dependent diabetes mellitus: prospective, observational study. BMJ 314:783–788PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ravid M, Brosch D, Ravid SD, Levy Z, Rachmani R (1998) Main risk factors in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure and hyperglycemia. Arch Intern Med 158:998–1004CrossRefPubMedGoogle Scholar
  11. 11.
    Caramori ML, Gross JL, Pecis M, Azevedo MJ (1999) Glomerular filtration rate, urinary albumin excretion rate and blood pressure changes in normoalbuminuric normotensive type 1 diabetes patients: an 8 year follow up study. Diabetes Care 22:1512–1516CrossRefPubMedGoogle Scholar
  12. 12.
    Pecis M, Azevedo MJ, Gross JL (1994) Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients. Diabetes Care 17:665–672CrossRefPubMedGoogle Scholar
  13. 13.
    Riley MD, Dweyr T (1998) Microalbuminuria is positively associated with usual dietary saturated fat intake and negatively associated with usual dietary protein intake in people with insulin dependent diabetes mellitus. Am J Clin Nutr 67:50–57PubMedGoogle Scholar
  14. 14.
    Vriese AS, Verbeuren TJ, Van DV (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Du XL, Eldestein D, Dimmeler S (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Deckert T, Feld RB, Borch JK (1989) Albuminuria reflects widespread vascular damage. Steno Hypothesis 32:219–226Google Scholar
  17. 17.
    Chiarelli F, Gasperi S, Marchovecchio MZ (2009) Role of growth factor in diabetic kidney disease. Horm Metab Res 41(8):585–593CrossRefPubMedGoogle Scholar
  18. 18.
    Rask MC, King GL (2010) Kidney complications; factors that protect the diabetic vasculature. Nat Med 16(1):40–41CrossRefGoogle Scholar
  19. 19.
    Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for TGF beta as the major mediator. J Am Soc Nephrol 15(1):55–57CrossRefGoogle Scholar
  20. 20.
    Viktorínová A, Toserová E, Krizko M, Duracková Z (2009) Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 58:1477–1482CrossRefPubMedGoogle Scholar
  21. 21.
    Ferns G, Lamb D, Taylor A (1997) The possible role of copper ions in atherogenesis: the blue janus. Atherosclerosis 133:139–152CrossRefPubMedGoogle Scholar
  22. 22.
    World Health Organization (1999) Definition, diagnosis, and classification of diabetes mellitus and its complications, report of a WHO consultation part 1: diagnosis and classification of diabetes mellitus. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  23. 23.
    Adsen A, Gitlin JD (2007) Copper deficiency. Curr Opin Gastroenterol 23:187–192CrossRefGoogle Scholar
  24. 24.
    Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL (1991) Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 14:1050–1056CrossRefPubMedGoogle Scholar
  25. 25.
    Real J, Bermego A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–2354CrossRefGoogle Scholar
  26. 26.
    Ganz T, Nemeth E (2006) Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290(2):199–203CrossRefGoogle Scholar
  27. 27.
    Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalban IN, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18CrossRefPubMedGoogle Scholar
  28. 28.
    Ferńandez-Real J, Engel WR, Arroyo E et al (1998) Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 21:62–68CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291(6):711–717CrossRefPubMedGoogle Scholar
  30. 30.
    Paolisso G, Scheen A, D’Onofrio F, Lefebvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33:511–514CrossRefPubMedGoogle Scholar
  31. 31.
    Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58(3):67–72CrossRefPubMedGoogle Scholar
  32. 32.
    Tosiello L (1996) Hypomagnesemia and diabetes mellitus: a review of clinical implications. Arch Intern Med 156(11):1143–1148CrossRefPubMedGoogle Scholar
  33. 33.
    Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, Sarfaraz RA, Shah A, Kandhro GA, Shah AQ (2008) Potassium, calcium, magnesium, and sodium levels in biological samples of hypertensive and non-hypertensive diabetes mellitus patients. Biol Trace Elem Res 124(3):206–224CrossRefPubMedGoogle Scholar
  34. 34.
    Chausmer A (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17(2):109–115CrossRefPubMedGoogle Scholar
  35. 35.
    Kinlaw WB, Levine AS, Morley JE, Silvis SE, McClain CJ (1983) Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 75:273–277CrossRefPubMedGoogle Scholar
  36. 36.
    Stephen AM, Alex N, Mark M (2012) Zinc transporters, mechanisms of action and therapeutic utility: implications for type 2 diabetes mellitus. J Nutr Metab. doi:10.1155/2012/173712 Google Scholar
  37. 37.
    American Diabetes Association (2001) Clinical practice recommendations. Diabetes Care 24:69–72CrossRefGoogle Scholar
  38. 38.
    Hogg RJ, Portmann RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J (2000) Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the national kidney foundation conference on proteinuria, risk, assessment, detection, elimination (PARADE). Pediatrics 105:1242–1249CrossRefPubMedGoogle Scholar
  39. 39.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma. Clin Chem 18:499–502PubMedGoogle Scholar
  40. 40.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41CrossRefPubMedGoogle Scholar
  41. 41.
    Powers MA (1987) Handbook of diabetes nutritional management. Aspen Publishers Inc, MarylandGoogle Scholar
  42. 42.
    Nerlich AG, Sauer U, Kolm-Litty V, Wagner E, Koch M, Schleicher ED (1998) Expression of glutamine:fructose-6-phosphate amido transferase in human tissues: evidence for high variability and distinct regulation in diabetes. Diabetes 47:170–178CrossRefPubMedGoogle Scholar
  43. 43.
    Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Talaei A, Jabari S, Bigdeli MH, Farahani H, Siavash M (2011) Correlation between microalbuminuria and urinary copper in type two diabetic patients. Ind J Endocrinol Metab 15(4):316–319CrossRefGoogle Scholar
  45. 45.
    Aguilar MV, Saavedra P, Arrieta FJ et al (2007) Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab 51:402–406CrossRefPubMedGoogle Scholar
  46. 46.
    Zheng Y, Li XK, Wang Y, Cai L (2008) The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 32:135–145CrossRefPubMedGoogle Scholar
  47. 47.
    Serdar MA, Bakir F, Hasimi A et al (2009) Trace and toxic element patterns in nonsmoker patients with noninsulin dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Countries 29:35–40CrossRefGoogle Scholar
  48. 48.
    Babalola OO, Ojo LO, Akinleye AO (2007) Status of the levels of lead and selected trace elements in type 2 diabetes mellitus patients in Abeokuta, Nigeria. Afr J Biochem Res 1(7):127–131Google Scholar
  49. 49.
    Mumtaz A, Anees M, Fatima S, Ahmed R, Ibrahim M (2011) Serum zinc and copper levels in nephrotic syndrome patients. Pak J Med Sci 27(5):1173–1176Google Scholar
  50. 50.
    Teitiker T, Paydas S, Yuregir G, Sagliker Y (1993) Trace elements alteration in chronic hemodialysis patients with chronic renal failure and proteinuria. J Biol Inorg Chem 6:33–35Google Scholar
  51. 51.
    Joshi A, Ratnu KS, Joshi KC, Vyas PC (1993) Trace elements in nephrotic syndrome and chronic renal failure. Indian J Nephrol 3:48–50Google Scholar
  52. 52.
    Yasmin H, Neggers JR, William W (2001) Dressler the relationship between zinc and copper status and lipid levels in African-Americans. Biol Trace Elem Res 79:1–13CrossRefGoogle Scholar
  53. 53.
    Osredkar J, Sustar N (2011) Copper and zinc biological role and significance of copper/zinc imbalance. J Clinic Toxicol. doi:10.4172/2161-0495.S3-001 Google Scholar
  54. 54.
    Meenakshi P, Uma G, Nayyar SB (2013) Comparative study of serum zinc, magnesium and copper levels among patients of type 2 diabetes mellitus with and without microangiopathic complications. Innov J Med Health Sci 3(6):274–278Google Scholar
  55. 55.
    Hershko C, Peto TE, Weatherall DJ (1988) Iron and infection. Br Med J 296:660–664CrossRefGoogle Scholar
  56. 56.
    Adams PC, Reboussin DM, Barton JC et al (2005) Hemochromatosis andiron-overload screening in a racially diverse population. N Engl J Med 352(17):1769–1778CrossRefPubMedGoogle Scholar
  57. 57.
    Worwood M (2002) Serum transferrin receptor assays and their application. Ann Clin Biochem 39(3):221–230CrossRefPubMedGoogle Scholar
  58. 58.
    Harrison MD, Jones EJ, Dameron CE (1999) Copper chaperones: function, structure and copper binding properties. J Biol Inorg Chem 4:145–153CrossRefPubMedGoogle Scholar
  59. 59.
    Pufahl RA, O’Halloran TV (1999) Mechanisms of copper chaperone proteins. In: Sarkar B (ed) Metals and genetics. Plenum Publishing Corporation, New YorkGoogle Scholar
  60. 60.
    Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51:301–323CrossRefPubMedGoogle Scholar
  61. 61.
    Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci 97:2886–2891PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Eshed I, Elis A, Lishner M (2001) Plasma ferritin and type 2 diabetes mellitus: a critical review. Endocr Res 27:91–97CrossRefPubMedGoogle Scholar
  63. 63.
    Wilson JG, Lindquist JH, Grambow SC et al (2003) Potential role of increased iron stores in diabetes. Am J Med Sci 325(6):332–339CrossRefPubMedGoogle Scholar
  64. 64.
    Mueller AS, Pallauf J (2006) Compendium of the anti diabetic effects of supra nutritional selenate doses: in vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17(8):548–560CrossRefPubMedGoogle Scholar
  65. 65.
    Pickup JC, Matttock MB, Chusney GD, Burt D (1997) NIDDM as a disease of the innate immune system: association of acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40:1286–1292CrossRefPubMedGoogle Scholar
  66. 66.
    Resnick L, Altura BT, Gupta RK, Laragh JH, Alderman MH, Altura BM (1993) Intracellular and extracellular magnesium depletion in type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 36:767–70CrossRefPubMedGoogle Scholar
  67. 67.
    Herbert SC, Desir G, Giebisch G (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85(1):319–371CrossRefGoogle Scholar
  68. 68.
    Pham PT, Pham SV, Miller JM, Pham PT (2007) Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2(2):366–373CrossRefPubMedGoogle Scholar
  69. 69.
    Ma J, Folsom AR, Melnick SA et al (1995) Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. J Clin Epidemiol 48(7):927–940CrossRefPubMedGoogle Scholar
  70. 70.
    Corsonello A, Lentile R, Buemi M, Cucinotto D, Mauro VN, Macaione S et al (2000) Serum ionized magnesium levels in type 2 diabetic patients with microalbuminuria or clinical proteinuria. Am J Nephrol 20:187–92CrossRefPubMedGoogle Scholar
  71. 71.
    Gurfinkel D (1988) Role of magnesium in metabolism. Magnesium 7:249–261Google Scholar
  72. 72.
    Nosnwu AC, Usoro AO (2006) Glycemic control and serum and urinary levels of zinc and magnesium in diabetes in Calabar, Nigeria. Pak J Nutr 5(1):75–78CrossRefGoogle Scholar
  73. 73.
    Walter RM, Uriu-Hare OJY et al (1991) Copper, zinc, manganese and magnesium status and complications of diabetes mellitus. Diabetes Care 11:1050–1056CrossRefGoogle Scholar
  74. 74.
    Tripathy S, Sumathi S, BhupalRaj G (2004) Mineral nutritional status of type 2 diabetic subjects. Int J Diabetes Dev Countries 24:27–28Google Scholar
  75. 75.
    Chambers EC, Heshka S, Gallagher D et al (2006) Serum magnesium and type-2 diabetes in African Americans and Hispanics: a New York Cohort. J Am Coll Nutr 25:509–513CrossRefPubMedGoogle Scholar
  76. 76.
    Masood N, Baloch GH, Ghori RA, Memon IA, Memon MA, Memon MS (2009) Serum zinc and magnesium in type-2 diabetic patients. J Coll Phys Surg Pak 19:483–486Google Scholar
  77. 77.
    Karamouzis MV, Gorgoulis VG, Papavassiliou AG (2002) Transcription factors and neoplasia: vistas in novel drug design. Clin Cancer Res 8(5):949–961PubMedGoogle Scholar
  78. 78.
    Jansen J, Karges W, Rink L (2009) Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem 20(6):399–417CrossRefPubMedGoogle Scholar
  79. 79.
    Forte G, Bocca B, Peruzzu A et al (2013) Blood metals concentration in type 1 and type 2 diabetics. Biol Trace Elem Res 156:79–90CrossRefPubMedGoogle Scholar
  80. 80.
    Chung JS, Franco RJS, Curi PR (1995) Renal excretion of zinc in normal individuals during zinc tolerance test and glucose tolerance test. Trace Elem Electrolytes 12:62–67Google Scholar
  81. 81.
    Watts DL (1999) Trace elements and glucose disorders. Trace Elem Inc Newsl 11(2):5–9Google Scholar
  82. 82.
    Salgueiro MJ, Krebs N, Zubillaga MB et al (2001) Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res 81(3):215–228CrossRefPubMedGoogle Scholar
  83. 83.
    Wapnir RA (2000) Zinc deficiency, malnutrition and the gastrointestinal tract. J Nutr 130:1388–1392Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Farah Aziz Khan
    • 1
  • Noura Al Jameil
    • 1
  • Sadia Arjumand
    • 1
  • Mohammad Fareed Khan
    • 1
  • Hajera Tabassum
    • 1
  • Naif Alenzi
    • 2
  • Sereen Hijazy
    • 2
  • Samyah Alenzi
    • 1
  • Sahar Subaie
    • 1
  • Sabiha Fatima
    • 1
  1. 1.Department of Clinical Laboratory Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Research and Seized, Saudi Food and Drug Authority, Element Analysis UnitRiyadhKingdom of Saudi Arabia

Personalised recommendations