Advertisement

Biological Trace Element Research

, Volume 167, Issue 1, pp 63–69 | Cite as

Study on Biological Effects of La3+ on Rat Liver Mitochondria by Microcalorimetric and Spectroscopic Methods

  • Man Wu
  • Jia-Ling Gao
  • Zhi-Jiang Feng
  • Wen Liu
  • Ye-Zhong Zhang
  • Yi Liu
  • Jie DaiEmail author
Article

Abstract

The effects of lanthanum on heat production of mitochondria isolated from Wistar rat liver were investigated with microcalorimetry; simultaneously, the effects on mitochondrial swelling and membrane potential (Δψ) were determined by spectroscopic methods. La3+ showed only inhibitory action on mitochondrial energy turnover with IC50 being 55.8 μmol L−1. In the spectroscopic experiments, La3+, like Ca2+, induced rat liver mitochondrial swelling and decreased membrane potential (Δψ), which was inhibited by the specific permeability transition inhibitor, cyclosporine A (CsA). The induction ability of La3+ was stronger than that of Ca2+. These results demonstrated that La3+ had some biotoxicity effect on mitochondria; the effects of La3+ and Ca2+ on rat liver mitochondrial membrane permeability transition (MPT) are different, and La represents toxic action rather than Ca analogy.

Keywords

Mitochondria Metabolism La3+ Permeability transition 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the project by the National Natural Science Foundation of China (No. 21173026, 21225313) and the Key Program of Natural Science Foundation of Hubei Province (No. 2013CFA107).

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Wang CR, Lu XW, Tian Y, Cheng T, Hu LL, Chen FF, Jiang CJ, Wang XR (2011) Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycle in V. faba L. seedlings. Biol Trace Elem Res 143(2):1174–1181PubMedCrossRefGoogle Scholar
  2. 2.
    Cui JA, Zhang ZY, Bai W, Zhang LG, He X, Ma YH, Liu Y, Chai ZF (2012) Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. J Environ Sci-China 24(2):209–213PubMedCrossRefGoogle Scholar
  3. 3.
    Feng ZX, Zhang SG, Yang KY, Ni JZ (1996) Influence of intraperitoneal injection of rare earth compounds on the activity of antioxidant enzymes and the level of lipid peroxidation in mice livers. J Rare Earth 14(1):66–69Google Scholar
  4. 4.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  5. 5.
    Marubashi K, Hirano S, Suzuki KT (1998) Effects of intratracheal pretreatment with yttrium chloride (YCl3) on inflammatory responses of the rat lung following intratracheal instillation of YCl3. Toxicol Lett 99:43–51PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao HQ, Cheng J, Cai JW, Cheng Z, Cui YL, Gao GD, Hu RP, Gong XL, Wang L, Hong FS (2012) Liver injury and its molecular mechanisms in mice caused by exposure to cerium chloride. Arch Environ Contam Toxicol 62(1):154–164PubMedCrossRefGoogle Scholar
  7. 7.
    Wang QQ, Lai Y, Yang LM, Huang BL (2001) Preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution containing lanthanum. Anal Sci 17(6):789–791PubMedCrossRefGoogle Scholar
  8. 8.
    Shan XQ, Wang HO, Zhang SZ, Zhou HF, Zheng Y, Yu H, Wen B (2003) Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci 165(6):1343–1353CrossRefGoogle Scholar
  9. 9.
    Wang XP, Shan XQ, Zhang SZ, Wen B (2003) Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal Bioanal Chem 376(6):913–917PubMedCrossRefGoogle Scholar
  10. 10.
    Wu B, Zhang D, Wang D, Qi CY, Li ZY (2012) The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster. Ecotoxicology 21(7):2068–2077PubMedCrossRefGoogle Scholar
  11. 11.
    Scott I, Logan DC (2008) Mitochondria and cell death pathways in plants: actions speak louder than words. Plant Signal Behav 3(7):475–477PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Huang PL, Li JX, Zhang SH, Chen CX, Han Y, Liu N, Xiao Y, Wang H, Zhang M, Yu QH, Liu YT, Wang W (2011) Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes:accumulation and oxidative damage. Environ Toxicol Pharmacol 31(1):25–32PubMedCrossRefGoogle Scholar
  13. 13.
    Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7(1):2–15PubMedCrossRefGoogle Scholar
  14. 14.
    Dai J, Li CL, Zhang YZ, Liu Y (2008) Microcalorimetric investigation on effects of La-III on metabolic activity of mitochondria isolated from hybrid rice. Chem Biodivers 5(12):2684–2689PubMedCrossRefGoogle Scholar
  15. 15.
    Wu M, Gao JL, Sun MX, Zhang YZ, Liu Y, Dai J (2015) Effects of La(III) and Ca(II) on isolated Carassius auratus liver mitochondria: heat production and mitochondrial permeability transition. Biol Trace Elem Res. doi: 10.1007/s12011-014-0178-2 Google Scholar
  16. 16.
    Liu Y, Chen D, Chen AJ, Dong ZY, Nie YX, Lu R, Ni JZ (2003) Study on lanthanum deposit in liver of rats chronically exposed to lanthanum nitrate at low dose. J Health Toxicol 17:203–205Google Scholar
  17. 17.
    Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membr Biol 241(1):39–49PubMedCrossRefGoogle Scholar
  18. 18.
    Drahota Z, Milerová M, Endlicher R, Rychtrmoc D, Cervinková Z, Ostadal B (2012) Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res 61:S165–S172PubMedGoogle Scholar
  19. 19.
    Xiong TC, Jauneau A, Ranjeva R, Mazars C (2004) Isolated plant nuclei as mechanical and thermal sensors involved in calcium signaling. Plant J 40(1):12–21PubMedCrossRefGoogle Scholar
  20. 20.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385PubMedCrossRefGoogle Scholar
  21. 21.
    Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199PubMedCrossRefGoogle Scholar
  22. 22.
    Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(2):233–249PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hu ZY, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27(1):183–220CrossRefGoogle Scholar
  24. 24.
    Mei QM, Zhu YG (1990) Comparative study on mitochondrial DNA from cytoplasmic male sterile lines of Honglian type and Yebai type rice. J Wuhan Bot Res 8(1):25–33Google Scholar
  25. 25.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD (1998) Bid, a Bcl2 Interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490PubMedCrossRefGoogle Scholar
  26. 26.
    Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766PubMedGoogle Scholar
  27. 27.
    Wadsö I (2002) Isothermal microcalorimetry in applied biology. Thermochim Acta 394(1–2):305–311CrossRefGoogle Scholar
  28. 28.
    Liu HX, Yuan L, Yang XD, Wang K (2003) La3+, Gd3+ and Yb3+ induced changes in mitochondrial structure, membrane permeability, cytochrome c release and intracellular ROS level. Chem Biol Interact 146(1):27–37PubMedCrossRefGoogle Scholar
  29. 29.
    Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181(5):1661–1672PubMedCrossRefGoogle Scholar
  30. 30.
    Liu Y, Deng FJ, Zhao RM, Shen XS, Wang CX, Qu SS (2000) Microcalorimetric studies of the toxic action of La3+ in mitochondria isolated from Star-cross 288 chicken heart tissue cells. Chemosphere 40(8):851–854CrossRefGoogle Scholar
  31. 31.
    Zheng D, Liu Y, Zhang Y, Chen XJ, Shen YF (2006) Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF5 during growth. Environ Toxicol Pharmacol 22(2):121–127PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao YL, Wang JB, Zhang P, Shan LM, Li RS, Xiao XH (2011) Microcalorimetric study of the opposing effects of ginsenosides Rg(1) and Rb(1) on the growth of mice splenic lymphocytes. J Therm Anal Calorim 104(1):357–363CrossRefGoogle Scholar
  33. 33.
    Nedergaard J, Canno B, Lindberg O (1977) Microcalorimetry of isolated mammalian cells. Nature 267:518–520PubMedCrossRefGoogle Scholar
  34. 34.
    Xie CL, Tang HK, Song ZH, Qu SS (1988) Microcalorimetric study of bacterial growth. Thermochim Acta 123:33–38CrossRefGoogle Scholar
  35. 35.
    Hou AX, Xue Z, Liu Y, Qu SS, Wong WK (2007) Antibacterial effects of a monoporphyrinato ytterbium(III) complex and its free components on Staphylococcus aureus as determined by stop-flow microcalorimetry. Chem Biodivers 4(7):1492PubMedCrossRefGoogle Scholar
  36. 36.
    Kanno T, Sato EE, Muranaka S, Fujita H, Fujiwara T, Utsumi T, Inoue M, Utsumi K (2004) Oxidative stress underlies the mechanism for Ca(2+)-induced permeability transition of mitochondria. Free Radic Res 38(1):27–35PubMedCrossRefGoogle Scholar
  37. 37.
    Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54(1):101–127PubMedCrossRefGoogle Scholar
  38. 38.
    Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 267(1–2):191–206CrossRefGoogle Scholar
  39. 39.
    Wang K, Li RC, Cheng Y, Zhu B (1999) Lanthanides—the future drugs. Coord Chem Rev 190–192:297–308CrossRefGoogle Scholar
  40. 40.
    Nilsson JR, Coleman JR (1977) Calcium-rich refractiles granules in Tetrahymena pyriformis and their possible role in the intracellular ion regulation. J Cell Sci 24(5):311–325PubMedGoogle Scholar
  41. 41.
    Feng XD, Xia Q, Yuan L, Yang XD, Wang K (2010) Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. NeuroToxicology 31(4):391–398PubMedCrossRefGoogle Scholar
  42. 42.
    Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80(2):207–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations