Advertisement

Biological Trace Element Research

, Volume 165, Issue 2, pp 222–232 | Cite as

Cadmium Accumulation and Metallothionein Response in the Freshwater Bivalve Corbicula fluminea Under Hydrodynamic Conditions

  • Nan Geng
  • Chao Wang
  • Peifang Wang
  • Ning Qi
  • Lingxiao Ren
Article

Abstract

Freshwater bivalves such as Corbicula fluminea (Müller) are useful biomonitors for cadmium pollution because they absorb heavy metals and accumulate them in their tissues. We exposed C. fluminea in the laboratory to natural and cadmium (Cd)-spiked sediments below flowing water in order to evaluate the organisms’ Cd accumulation and metallothionein (MT) response under hydrodynamic conditions. The accumulation of Cd and the induction of MT in C. fluminea were determined at 0, 1, 3, 6, 10, 16, and 23 days. Hydrodynamic conditions, represented by a water flow rate of 14 or 3.2 cm/s, increased Cd accumulation in the visceral mass, gill, foot, and mantle of C. fluminea in the first 3 or 6 days in the natural sediment. Cd concentrations in the C. fluminea tissues kept increasing over time in the three treatments, and significant differences were observed in Cd accumulation after 6 (visceral mass), 10 (foot) and 16 (gill and mantle) days among the three groups. The MT concentrations were barely affected by hydrodynamic conditions and were significantly linearly related to the Cd concentration in the visceral mass in the natural sediment and binomially related to it in the Cd-spiked sediment. Hydrodynamic conditions enhanced the accumulation of Cd in the soft tissues of C. fluminea, especially in the Cd-spiked sediment, but stronger hydrodynamic forces did not increase Cd accumulation. MT may be considered an indicator for Cd accumulation in C. fluminea under hydrodynamic conditions, but only when the Cd concentrations in the tissue remain below the toxic threshold values.

Keywords

Cadmium Accumulation Corbicula fluminea Hydrodynamic conditions Metallothionein 

Notes

Acknowledgments

We are grateful for grants from National Science Fund for Distinguished Young Scholars (No. 51225901), the Outstanding Youth Fund of Jiangsu Province (No. BK2012037), National Science Funds for Creative Research Groups of China (No. 51421006), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13061), Key Program of National Natural Science Foundation of China (No. 41430751), the National Natural Science Foundation of China (No. 51479065), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Reynoldson TB, Day KE (1993) Freshwater sediments. Oxford Blackwell Science, LondonGoogle Scholar
  2. 2.
    Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243. doi: 10.1016/j.envint.2011.11.013 CrossRefPubMedGoogle Scholar
  3. 3.
    Kalnejais LH, Martin WR, Bothner MH (2010) The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar Chem 121(1–4):224–235. doi: 10.1016/j.marchem.2010.05.002 CrossRefGoogle Scholar
  4. 4.
    Singh SP, Tack FMG, Gabriels D, Verloo MG (2000) Heavy metal transport from dredged sediment derived surface soils in a laboratory rainfall simulation experiment. Water Air Soil Pollut 118(1–2):73–86. doi: 10.1023/A:1005140726372 CrossRefGoogle Scholar
  5. 5.
    Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30(7):973–980. doi: 10.1016/j.envint.2004.03.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Bigot A, Minguez L, Giambérini L, Rodius F (2011) Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: transcriptional and histochemical studies. Environ Toxicol 26(6):623–632. doi: 10.1002/tox.20599 CrossRefPubMedGoogle Scholar
  7. 7.
    Hare L, Tessier A, Warren L (2001) Cadmium accumulation by invertebrates living at the sediment–water interface. Environ Toxicol Chem 20(4):880–889PubMedGoogle Scholar
  8. 8.
    Villar C, Stripeikis J, D'Huicque L, Tudino M, Troccoli O, Bonetto C (1999) Cd, Cu and Zn concentrations in sediments and the invasive bivalves Limnoperna fortunei and Corbicula fluminea at the Río de la Plata basin, Argentina. Hydrobiologia 416(1):41–49CrossRefGoogle Scholar
  9. 9.
    Shoults-Wilson WA, Unrine JM, Rickard J, Black MC (2010) Comparison of metal concentrations in Corbicula fluminea and Elliptio hopetonensis in the Altamaha River system, Georgia, USA. Environ Toxicol Chem 29(9):2026–2033. doi: 10.1002/etc.235 PubMedGoogle Scholar
  10. 10.
    Giguère A, Couillard Y, Campbell PGC, Perceval O, Hare L, Pinel-Alloul B, Pellerin J (2003) Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat Toxicol 64(2):185–200. doi: 10.1016/s0166-445x(03)00052-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76(2):160–202. doi: 10.1016/j.aquatox.2005.08.015 CrossRefPubMedGoogle Scholar
  12. 12.
    Shariati F, Esaili Sari A, Mashinchian A, Pourkazemi M (2011) Metallothionein as potential biomarker of cadmium exposure in Persian sturgeon (Acipenser persicus). Biol Trace Elem Res 143(1):281–291. doi: 10.1007/s12011-010-8877-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Baudrimont M, Andres S, Durrieu G, Boudou A (2003) The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn. Aquat Toxicol 63(2):89–102. doi: 10.1016/s0166-445x(02)00134-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Zuykov M, Pelletier E, Harper DA (2013) Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93(2):201–208. doi: 10.1016/j.chemosphere.2013.05.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Fraysse B, Baudin JP, Garnier-Laplace J, Boudou A, Ribeyre F, Adam C (2000) Cadmium uptake by Corbicula fluminea and Dreissena polymorpha: effects of pH and temperature. Bull Environ Contam Toxicol 65(5):638–645. doi: 10.1007/s001280000171 CrossRefPubMedGoogle Scholar
  16. 16.
    Legeay A, Achard-Joris M, Baudrimont M, Massabuau JC, Bourdineaud JP (2005) Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea. Aquat Toxicol 74(3):242–253. doi: 10.1016/j.aquatox.2005.05.015 CrossRefPubMedGoogle Scholar
  17. 17.
    Pynnonen K (1995) Effect of pH, hardness and maternal pre-exprosure on the toxicity of Cd, Cu and Zn to the glochidial larvae of a freshwater clay Anodonta cygnea. Water Res 29(1):247–254CrossRefGoogle Scholar
  18. 18.
    Chaharlang BH, Bakhtiari AR, Yavari V (2012) Assessment of cadmium, copper, lead and zinc contamination using oysters (Saccostrea cucullata) as biomonitors on the coast of the Persian Gulf, Iran. Bull Environ Contam Toxicol 88(6):956–961. doi: 10.1007/s00128-012-0591-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Avelar WEP, Mantelatto FLM, Tomazelli AC, Silva DML, Shuhama T, Lopes JLC (2000) The marine mussel Perna perna (Mollusca, Bivalvia, Mytilidae) as an indicator of contamination by heavy metals in the Ubatuba Bay, São Paulo, Brazil. Water Air Soil Pollut 118(1–2):65–72. doi: 10.1023/A:1005109801683 CrossRefGoogle Scholar
  20. 20.
    Ciutat A, Gerino M, Boudou A (2007) Remobilization and bioavailability of cadmium from historically contaminated sediments: influence of bioturbation by tubificids. Ecotoxicol Environ Saf 68(1):108–117. doi: 10.1016/j.ecoenv.2006.06.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Ciutat A, Boudou A (2003) Bioturbation effects on cadmium and zinc transfers from a contaminated sediment and on metal bioavailability to benthic bivalves. Environ Toxicol Chem 22(7):1574–1581CrossRefPubMedGoogle Scholar
  22. 22.
    Zou H, Sheng G, Sun C, Xu O (1996) Distribution of organic contaminants in Lake Taihu. Water Res 30(9):2003–2008. doi: 10.1016/0043-1354(96)00025-5 CrossRefGoogle Scholar
  23. 23.
    Baudrimont M, Metivaud J, Maury-Brachet R, Ribeyre F, Boudou A (1997) Bioaccumulation and metallothionein response in the asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environ Toxicol Chem 16(10):2096–2105CrossRefGoogle Scholar
  24. 24.
    Zheng S, Wang P, Wang C, Hou J, Qian J (2013) Distribution of metals in water and suspended particulate matter during the resuspension processes in Taihu Lake sediment, China. Quat Int 286:94–102. doi: 10.1016/j.quaint.2012.09.003 CrossRefGoogle Scholar
  25. 25.
    van Griethuysen C, Gillissen F, Koelmans AA (2002) Measuring acid volatile sulphide in floodplain lake sediments: effect of reaction time, sample size and aeration. Chemosphere 47(4):395–400. doi: 10.1016/S0045-6535(01)00314-9 CrossRefPubMedGoogle Scholar
  26. 26.
    UNEP/RAMOGE (1999) Manual on the Biomarkers Recommended for the MED POL Biomonitoring Programme. AthensGoogle Scholar
  27. 27.
    Onosaka S, Cherian MG (1982) Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicol Appl Pharmacol 63(2):270–274CrossRefPubMedGoogle Scholar
  28. 28.
    Peltier GL, Wright MS, Hopkins WA, Meyer JL (2009) Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant. Ecotoxicol Environ Saf 72(5):1384–1391. doi: 10.1016/j.ecoenv.2009.01.011 CrossRefPubMedGoogle Scholar
  29. 29.
    De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012) The impact of increased oxygen conditions on metal-contaminated sediments part II: effects on metal accumulation and toxicity in aquatic invertebrates. Water Res 46(10):3387–3397. doi: 10.1016/j.watres.2012.03.035 CrossRefPubMedGoogle Scholar
  30. 30.
    Roméo M, Gnassia-Barelli M (1995) Metal distribution in different tissues and in subcellular fractions of the Mediterranean clam Ruditapes decussatus treated with cadmium, copper, or zinc. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 111(3):457–463. doi: 10.1016/0742-8413(95)00060-7 Google Scholar
  31. 31.
    Yap CK, Ismail A, Tan SG, Rahim Ismail A (2004) Assessment of different soft tissues of the green-lipped mussel Perna viridis (Linnaeus) as biomonitoring agents of Pb: field and laboratory studies. Water Air Soil Pollut 153(1–4):253–268. doi: 10.1023/B:WATE.0000019946.84885.94 CrossRefGoogle Scholar
  32. 32.
    Tessier A, Campbell PGC, Auclair JC, Bisson M (1984) Relationships between the partitioning of yrace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can J Fish Aquat Sci 41(10):1463–1472. doi: 10.1139/f84-180 CrossRefGoogle Scholar
  33. 33.
    Griscom SB, Fisher NS, Luoma SN (2000) Geochemical influences on assimilation of sediment-bound metals in clams and mussels. Environ Sci Technol 34(1):91–99. doi: 10.1021/es981309+ CrossRefGoogle Scholar
  34. 34.
    Pan J-F, Wang W-X (2004) Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel Perna viridis. Environ Pollut 129(3):467–477. doi: 10.1016/j.envpol.2003.11.015 CrossRefPubMedGoogle Scholar
  35. 35.
    Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42(12):2849–2861. doi: 10.1016/j.watres.2008.03.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Langer OE (1980) Effects of sedimentation on salmonid stream life. In: L W (ed), Whitehorse, Yukon TerritoryGoogle Scholar
  37. 37.
    Gundacker C (1999) Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere 38(14):3339–3356. doi: 10.1016/S0045-6535(98)00567-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Marie V, Baudrimont M, Boudou A (2006) Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere 65(4):609–617. doi: 10.1016/j.chemosphere.2006.01.074 CrossRefPubMedGoogle Scholar
  39. 39.
    del Ramo J, Torreblanca A, Martínez M, Pastor A, Díaz-Mayans J (1995) Quantification of cadmium-induced metallothionein in crustaceans by the silver-saturation method. Mar Environ Res 39(1-4):121–125. doi: 10.1016/0141-1136(94)00067-Y CrossRefGoogle Scholar
  40. 40.
    Martínez M, Torreblanca A, Ramo JD, Pastor A, Díaz-Mayans J (1993) Cadmium induced metallothionein in hepatopancreas of Procambarus clarkii: quantification by a silver-saturation method. Comp Biochem Physiol C: Comp Pharmacol 105(2):263–267. doi: 10.1016/0742-8413(93)90205-Y CrossRefGoogle Scholar
  41. 41.
    Isani G, Andreani G, Kindt M, Carpenè E (2000) Metallothioneins (MTs) in marine molluscs. Cell Mol Biol 46(2):311–330PubMedGoogle Scholar
  42. 42.
    George SG, Olsson PE (1994) Metallothioneins as indicators of trace metal pollution. Biomonitoring of Coastal Waters and Estuaries. CRC, Boca RatonGoogle Scholar
  43. 43.
    Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: an overview. Metallothioneins III. Birkhäuser Verlag, BaselGoogle Scholar
  44. 44.
    Ivanković D, Pavicić J, Beatović V, Klobucar RS, Klobucar GI (2010) Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol. Environ Toxicol 25(2):198–211. doi: 10.1002/tox.20489 PubMedGoogle Scholar
  45. 45.
    Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33(4):576–582. doi: 10.1016/j.envint.2006.05.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nan Geng
    • 1
  • Chao Wang
    • 1
  • Peifang Wang
    • 1
  • Ning Qi
    • 1
  • Lingxiao Ren
    • 1
  1. 1.Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of EnvironmentHohai UniversityNanjingChina

Personalised recommendations