Advertisement

Biological Trace Element Research

, Volume 166, Issue 2, pp 245–259 | Cite as

Biochemical Comparison of Commercial Selenium Yeast Preparations

  • Sheena FaganEmail author
  • Rebecca Owens
  • Patrick Ward
  • Cathal Connolly
  • Sean Doyle
  • Richard Murphy
Article

Abstract

The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ≥2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways.

Keywords

Selenium Yeast Selenomethionine Speciation Supplementation Proteomics LC-MS/MS 

Notes

Acknowledgments

LC-MS facilities were funded by a competitive award from Science Foundation Ireland (12/RI/2346 (3)) to SD.

Conflict of Interest

SF, RM, CC and PW are employees of Alltech who retail selenium-enriched yeast as a commercial feed additive.

Supplementary material

12011_2015_242_MOESM1_ESM.docx (108 kb)
Supplementary Table 1 (DOCX 107 kb)

References

  1. 1.
    Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2013) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bierla K, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) Simultaneous derivatization of selenocysteine and selenomethionine in animal blood prior to their specific determination by 2D size-exclusion ion-pairing reversed-phase HPLC-ICP MS. J Anal At Spectrom 23(4):508–513CrossRefGoogle Scholar
  3. 3.
    Wang W, Chen Z, Davey D, Naidu R (2009) Extraction of selenium species in pharmaceutical tablets using enzymatic and chemical methods. Microchim Acta 165(1):167–172CrossRefGoogle Scholar
  4. 4.
    Barger J, Kayo T, Pugh T, Vann J, Power R, Dawson K, Weindruch R, Prolla T (2011) Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse. Genes Nutr 7(2):155–165PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zeng H, Jackson M, Cheng W-H, Combs G Jr (2011) Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model. Biol Trace Elem Res 143(2):1209–1218PubMedCrossRefGoogle Scholar
  6. 6.
    Alzate A, Pérez-Conde MC, Gutiérrez AM, Cámara C (2010) Selenium-enriched fermented milk: a suitable dairy product to improve selenium intake in humans. Int Dairy J 20(11):761–769CrossRefGoogle Scholar
  7. 7.
    Briens M, Mercier Y, Rouffineau F, Vacchina V, Geraert P-A (2013) Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Br J Nutr 110(04):617–624PubMedCrossRefGoogle Scholar
  8. 8.
    Xia Y, Hill KE, Byrne DW, Xu J, Burk RF (2005) Effectiveness of selenium supplements in a low-selenium area of China. Am J Clin Nutr 81(4):829–834PubMedGoogle Scholar
  9. 9.
    EFSA (2008) Selenium-enriched yeast as source for selenium added for nutritional purposes in foods for particular nutritional uses and foods (including food supplements) for the general population—scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J 766:1–42Google Scholar
  10. 10.
    Murphy R (2013) Understanding different types of organic selenium. Feedstuffs 85(52):31–33Google Scholar
  11. 11.
    Hinojosa-Reyes L, Ruiz-Encinar J, Marchante-Gayun JM, Garcia-Alonso JI, Sanz-Medel A (2006) Selenium bioaccessibility assessment in selenized yeast after "in vitro" gastrointestinal digestion using two-dimensional chromatography and mass spectrometry. J Chromatogr A 1110(1–2):108–116CrossRefGoogle Scholar
  12. 12.
    Encinar JR, Sliwka-Kaszynska M, Polatajko A, Vacchina V, Szpunar J (2003) Methodological advances for selenium speciation analysis in yeast. Anal Chim Acta 500(1–2):171–183CrossRefGoogle Scholar
  13. 13.
    B’Hymer C, Caruso JA (2000) Evaluation of yeast-based selenium food supplements using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 15(12):1531–1539CrossRefGoogle Scholar
  14. 14.
    Heras I, Palomo M, Madrid Y (2011) Selenoproteins: the key factor in selenium essentiality. State of the art analytical techniques for selenoprotein studies. Anal Bioanal Chem 400(6):1717–1727CrossRefGoogle Scholar
  15. 15.
    Ganesh V, Hettiarachchy NS (2012) Nutriproteomics: a promising tool to link diet and diseases in nutritional research. Biochim Biophys Acta (BBA) - Proteins Proteomics 1824(10):1107–1117CrossRefGoogle Scholar
  16. 16.
    El-Bayoumy K, Das A, Russell S, Wolfe S, Jordan R, Renganathan K, Loughran TP, Somiari R (2012) The effect of selenium enrichment on baker’s yeast proteome. J Proteome 75(3):1018–1030CrossRefGoogle Scholar
  17. 17.
    Bierla K, Szpunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-rich yeast. TrAC Trends Anal Chem 41:122–132CrossRefGoogle Scholar
  18. 18.
    Mester Z, Willie S, Yang L, Sturgeon R, Caruso J, Fernández M, Fodor P, Goldschmidt R, Goenaga-Infante H, Lobinski R, Maxwell P, McSheehy S, Polatajko A, Sadi B, Sanz-Medel A, Scriver C, Szpunar J, Wahlen R, Wolf W (2006) Certification of a new selenized yeast reference material (SELM-1) for methionine, selenomethinone and total selenium content and its use in an intercomparison exercise for quantifying these analytes. Anal Bioanal Chem 385(1):168–180PubMedCrossRefGoogle Scholar
  19. 19.
    Ward P, Connolly C, Murphy R (2012) Accelerated determination of selenomethionine in selenized yeast: validation of analytical method. Biol Trace Elem Res 151(3):446–450PubMedCrossRefGoogle Scholar
  20. 20.
    Dolan SK, Owens RA, O’Keeffe G, Hammel S, Fitzpatrick DA, Jones Gary W, Doyle S (2014) Regulation of nonribosomal peptide synthesis: bis-thiomethylation attenuates gliotoxin biosynthesis in Aspergillus fumigatus. Chem Biol 21(8):999–1012PubMedCrossRefGoogle Scholar
  21. 21.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMedCrossRefGoogle Scholar
  22. 22.
    Perucchietti P, Litjens W (2012) Why check selenomethionine levels in selenium yeast? Allaboutfeednet 20(6):12–13Google Scholar
  23. 23.
    Polatajko A, Sliwka-Kaszynska M, Dernovics M, Ruzik R, Ruiz Encinar J, Szpunar J (2004) A systematic approach to selenium speciation in selenized yeast. J Anal At Spectrom 19(1):114–120CrossRefGoogle Scholar
  24. 24.
    Goenaga Infante H, Hearn R, Catterick T (2005) Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium. Anal Bioanal Chem 382(4):957–967CrossRefGoogle Scholar
  25. 25.
    McSheehy S, Kelly J, Tessier L, Mester Z (2005) Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography-mass spectrometry based proteomic analysis. Analyst 130(1):35–37PubMedCrossRefGoogle Scholar
  26. 26.
    EFSA (2006) Opinion of the scientific panel on additives and products or substances used in animal feed on the safety and efficacy of the product Sel-Plex®2000 as a feed additive according to Regulation (EC) No 1831/2003. EFSA J 348:1–40Google Scholar
  27. 27.
    EFSA (2006) Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the product Selenium enriched yeast (Saccharomyces cerevisiae NCYC R397) as a feed additive for all species in accordance with Regulation (EC) No 1831/2003. EFSA J :1-23Google Scholar
  28. 28.
    EFSA (2009) Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the Safety and efficacy of SELSAF (Selenium enriched yeast from Saccharomyces cerevisiae CNCM I-3399) as feed additive for all species. EFSA J 992:1–24Google Scholar
  29. 29.
    Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112Google Scholar
  30. 30.
    Rao Y, McCooeye M, Windust A, Bramanti E, D’Ulivo A, Mester Z (2010) Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry. Anal Chem 82(19):8121–8130PubMedCrossRefGoogle Scholar
  31. 31.
    Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42(23):8870–8894PubMedCrossRefGoogle Scholar
  32. 32.
    Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol 14(1):43–47PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki KT (2005) Metabolomics of selenium: Se metabolites based on speciation studies. J Health Sci 51(2):107–114CrossRefGoogle Scholar
  34. 34.
    Hinojosa-Reyes L, Marchante-Gayon JM, Garcia Alonso JI, Sanz-Medel A (2006) Application of isotope dilution analysis for the evaluation of extraction conditions in the determination of total selenium and selenomethionine in yeast-based nutritional supplements. J Agric Food Chem 54(5):1557–1563PubMedCrossRefGoogle Scholar
  35. 35.
    Moreda-Piñeiro J, Moreda-Piñeiro A, Romarís-Hortas V, Moscoso-Pérez C, López-Mahía P, Muniategui-Lorenzo S, Bermejo-Barrera P, Prada-Rodríguez D (2011) In-vivo and in-vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. TrAC Trends Anal Chem 30(2):324–345CrossRefGoogle Scholar
  36. 36.
    Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100(2):254–268PubMedGoogle Scholar
  37. 37.
    B’Hymer C, Caruso JA (2006) Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A 1114(1):1–20PubMedCrossRefGoogle Scholar
  38. 38.
    Cabanero AI, Madrid Y, Camara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526(1):51–61CrossRefGoogle Scholar
  39. 39.
    Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92(04):557–573PubMedCrossRefGoogle Scholar
  40. 40.
    Połatajko A, Banaś B, Encinar JR, Szpunar J (2005) Investigation of the recovery of selenomethionine from selenized yeast by two-dimensional LC–ICP MS. Anal Bioanal Chem 381(4):844–849PubMedCrossRefGoogle Scholar
  41. 41.
    Gammelgaard B, Cornett C, Olsen Jr, Bendahl L, Hansen SH (2003) Combination of LC-ICP-MS, LC-MS and NMR for investigation of the oxidative degradation of selenomethionine. Talanta 59(6):1165–1171PubMedCrossRefGoogle Scholar
  42. 42.
    Zembrzuska J, Matusiewicz H, Polkowska-Motrenko H, Chajduk E (2014) Simultaneous quantitation and identification of organic and inorganic selenium in diet supplements by liquid chromatography with tandem mass spectrometry. Food Chem 142:178–187PubMedCrossRefGoogle Scholar
  43. 43.
    Tastet L, Schaumlöffel D, Bouyssiere B, Lobinski R (2006) Capillary HPLC–ICP MS mapping of selenocompounds in spots obtained from the 2-D gel electrophoresis of the water-soluble protein fraction of selenized yeast. Anal Bioanal Chem 385(5):948–953PubMedCrossRefGoogle Scholar
  44. 44.
    Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4(10):787–797PubMedCrossRefGoogle Scholar
  45. 45.
    Baudouin-Cornu P, Lagniel G, Chédin S, Labarre J (2009) Development of a new method for absolute protein quantification on 2-D gels. Proteomics 9(20):4606–4615PubMedCrossRefGoogle Scholar
  46. 46.
    McJury Richardson B, Soderblom EJ, Moseley MA (2013) Automated, reproducible, titania-based phosphopeptide enrichment strategy for label-free quantitative phosphoproteomics. J Biomol Tech 24(1):8–16Google Scholar
  47. 47.
    Asuero AG, Sayago A, Gonzalez AG (2006) The correlation coefficient: an overview. Crit Rev Anal Chem 36:41–59CrossRefGoogle Scholar
  48. 48.
    Clough T, Key M, Ott I, Ragg S, Schadow G, Vitek O (2009) Protein quantification in label-free LC-MS experiments. J Proteome Res 8(11):5275–5284PubMedCrossRefGoogle Scholar
  49. 49.
    EFSA (2013) Scientific opinion on the safety and efficacy of L-selenomethionine as feed additive for all animal species. EFSA J 11(5):3219Google Scholar
  50. 50.
    Bierla K, Bianga J, Ouerdane L, Szpunar J, Yiannikouris A, Lobinski R (2013) A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J Proteome 87:26–39CrossRefGoogle Scholar
  51. 51.
    Tastet L, Schaumloffel D, Lobinski R (2008) ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J Anal At Spectrom 23(3):309–317CrossRefGoogle Scholar
  52. 52.
    Goyco JA, Asenjo CF (1947) The net protein value of food yeast. J Nutr 33:593PubMedGoogle Scholar
  53. 53.
    Kieliszek M, Blazejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29(5):713–718PubMedCrossRefGoogle Scholar
  54. 54.
    Mapelli V, Hillestrom PR, Kapolna E, Larsen EH, Olsson L (2011) Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metab Eng 13(3):282–293PubMedCrossRefGoogle Scholar
  55. 55.
    Rayman MP, Goenaga Infante H, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100(2):238–253PubMedGoogle Scholar
  56. 56.
    Schrauzer GN (2006) Selenium yeast: composition, quality, analysis, and safety. Pure Appl Chem 78(1):105–109CrossRefGoogle Scholar
  57. 57.
    Far J, Preud’homme H, Lobinski R (2010) Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection. Anal Chim Acta 657(2):175–190PubMedCrossRefGoogle Scholar
  58. 58.
    Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Kim Park H, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. JAMA 276(24):1957–1963PubMedCrossRefGoogle Scholar
  59. 59.
    von der Haar T (2007) Optimized protein extraction for quantitative proteomics of yeasts. PLoS ONE 2(10):e1078PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Mahn AV, Munoz MC, Zamorano MJ (2009) Discovery of biomarkers that reflect the intake of sodium selenate by nutritional proteomics. J Chromatogr Sci 47(9):840–843PubMedCrossRefGoogle Scholar
  61. 61.
    Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA (2011) FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 48(4):353–358PubMedCrossRefGoogle Scholar
  63. 63.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich K-U, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314PubMedCrossRefGoogle Scholar
  64. 64.
    Dato L, Berterame N, Ricci M, Paganoni P, Palmieri L, Porro D, Branduardi P (2014) Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae. Microb Cell Factories 13:147Google Scholar
  65. 65.
    Malkowski MG, Quartley E, Friedman AE, Babulski J, Kon Y, Wolfley J, Said M, Luft JR, Phizicky EM, DeTitta GT, Grayhack EJ (2007) Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing. Proc Natl Acad Sci 104(16):6678–6683PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Luo J, Li Y-N, Wang F, Zhang W-M, Geng X (2010) S-Adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci 6(7):784–795PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Chu J, Qian J, Zhuang Y, Zhang S, Li Y (2013) Progress in the research of S-adenosyl-l-methionine production. Appl Microbiol Biotechnol 97(1):41–49PubMedCrossRefGoogle Scholar
  68. 68.
    Cherest H, Surdin-Kerjan Y, Exinger F, Lacroute F (1978) S-Adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol Gen Genet 163(2):153–167PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y (1988) SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol 8(12):5132–5139PubMedCentralPubMedGoogle Scholar
  70. 70.
    Thomas D, Surdin-Kerjan Y (1991) The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae. Mol Gen Genet 226(1–2):224–232PubMedCrossRefGoogle Scholar
  71. 71.
    Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279(21):22548–22557Google Scholar
  72. 72.
    Chiang PK (1998) Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol Ther 77(2):115–134PubMedCrossRefGoogle Scholar
  73. 73.
    Mapelli V, Hillestrøm PR, Patil K, Larsen EH, Olsson L (2012) The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Res 12(1):20–32PubMedCrossRefGoogle Scholar
  74. 74.
    Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K, Bachhawat AK (2011) Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157(2):484–495PubMedCrossRefGoogle Scholar
  75. 75.
    Collison EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278(25):22492–22497CrossRefGoogle Scholar
  76. 76.
    Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330(Pt 2):811–817PubMedCentralPubMedGoogle Scholar
  77. 77.
    Kumar A, Bachhawat AK (2010) OXP1/YKL215c encodes an ATP-dependent 5-oxoprolinase in Saccharomyces cerevisiae: functional characterization, domain structure and identification of actin-like ATP-binding motifs in eukaryotic 5-oxoprolinases. FEMS Yeast Res 10(4):394–401PubMedCrossRefGoogle Scholar
  78. 78.
    Tomasi ML, Ramani K, Lopitz-Otsoa F, Rodríguez MS, Li TWH, Ko K, Yang H, Bardag-Gorce F, Iglesias-Ara A, Feo F, Pascale MR, Mato JM, Lu SC (2010) S-Adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes. Hepatology 51(6):2152–2161PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sheena Fagan
    • 1
    Email author
  • Rebecca Owens
    • 2
  • Patrick Ward
    • 1
  • Cathal Connolly
    • 1
  • Sean Doyle
    • 2
  • Richard Murphy
    • 1
  1. 1.Alltech Biotechnology CentreDunboyneIreland
  2. 2.Department of BiologyMaynooth UniversityMaynoothIreland

Personalised recommendations