Biological Trace Element Research

, Volume 159, Issue 1–3, pp 128–134 | Cite as

Assessment of Total and Organic Mercury Levels in Blue Sharks (Prionace glauca) from the South and Southeastern Brazilian Coast

  • Gabriel Gustinelli Arantes de Carvalho
  • Iracema Alves Manoel Degaspari
  • Vasco Branco
  • João Canário
  • Alberto Ferreira de Amorim
  • Valerie Helen Kennedy
  • José Roberto Ferreira
Article

Abstract

Mercury occurrence was evaluated in samples of edible muscle tissue of 27 blue sharks (Prionace glauca) caught in the Atlantic Ocean, adjacent to the south and southeastern Brazilian coast, indicating a slight increase in comparison with previous data obtained for the same studied area and being higher than those fish caught at different sites of the Atlantic Ocean. Total Hg concentrations ranged from 0.46 to 2.40 mg kg−1 with the organic Hg fraction ranging between 0.44 and 2.37 mg kg−1. A negative correlation between total Hg concentration in muscle tissue and blue shark size was obtained, and 40 % of samples analyzed had Hg concentrations higher than 1.0 mg kg−1 Hg, the maximum concentration permitted in Brazilian predator fish. Data obtained showed that total Hg can be used as a reliable predictor of organic Hg in blue shark muscle because 95 to 98 % of the total Hg measured was found to be organic mercury. The wide range of Hg concentrations obtained for our set of samples can be explained by the heterogeneity of sampled population and the large size of the studied area. Given the adverse toxicological effects of Hg on animals and humans, a regular monitoring program of Hg contamination in Brazilian marine ecosystem can be recommended.

Keywords

Blue shark Mercury speciation Biomagnification Marine food web Brazilian coast 

References

  1. 1.
    de Lacerda LD, dos Santos AF, Marins RV (2007) Mercury emissions to the atmosphere from natural gas burning in Brazil. Quim Nova 30(2):366–369. doi:10.1590/S0100-40422007000200024 CrossRefGoogle Scholar
  2. 2.
    Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77(2):73–78. doi:10.1006/enrs.1998.3828 PubMedCrossRefGoogle Scholar
  3. 3.
    Sunderland EM, Cohen MD, Selin NE, Chmura GL (2008) Reconciling models and measurements to assess trends in atmospheric mercury deposition. Environ Pollut 156(2):526–535. doi:10.1016/j.envpol.2008.01.021 PubMedCrossRefGoogle Scholar
  4. 4.
    Bargagli R, Monaci F, Bucci C (2007) Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol Biochem 39(1):352–360. doi:10.1016/j.soilbio.2006.08.005 CrossRefGoogle Scholar
  5. 5.
    Poissant L, Zhang HH, Canário J, Constant P (2008) Critical review of mercury fates and contamination in the arctic tundra ecosystem. Sci Total Environ 400(1–3):173–211. doi:10.1016/j.scitotenv.2008.06.050 PubMedCrossRefGoogle Scholar
  6. 6.
    Carvalho GGA, Ferreira JR, Kennedy VH (2010) Total and inorganic mercury determination in fish tissue by flow injection cold vapour atomic fluorescence spectrometry. Int J Environ Anal Chem 90:686–696. doi:10.1080/03067310902871729 CrossRefGoogle Scholar
  7. 7.
    Josef CF, Adriano LR, De França EJ, Arantes de Carvalho GG, Ferreira JR (2008) Determination of Hg and diet identification in otter (Lontra longicaudis) feces. Environ Pollut 152(3):592–596. doi:10.1016/j.envpol.2007.06.065 PubMedCrossRefGoogle Scholar
  8. 8.
    Krystek P, Ritsema R (2004) Determination of methylmercury and inorganic mercury in shark fillets. Appl Organomet Chem 18(12):640–645. doi:10.1002/aoc.697 CrossRefGoogle Scholar
  9. 9.
    Magalhães MC, Costa V, Menezes GM, Pinho MR, Santos RS, Monteiro LR (2007) Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores. Mar Pollut Bull 54(10):1654–1662. doi:10.1016/j.marpolbul.2007.07.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351. doi:10.1016/S0045-6535(99)00283-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Castro-Gonzalez MI, Mendez-Armenta M (2008) Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol 26(3):263–271. doi:10.1016/j.etap.2008.06.001 PubMedCrossRefGoogle Scholar
  12. 12.
    Guzzi G, La Porta CAM (2008) Molecular mechanisms triggered by mercury. Toxicology 244(1):1–12. doi:10.1016/j.tox.2007.11.002 PubMedCrossRefGoogle Scholar
  13. 13.
    Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49(5):1010–1017. doi:10.1139/f92-113 CrossRefGoogle Scholar
  14. 14.
    Branco V, Canário J, Vale C, Raimundo J, Reis C (2004) Total and organic mercury concentrations in muscle tissue of the blue shark (Prionace glauca L.1758) from the Northeast Atlantic. Mar Pollut Bull 49:871–874. doi:10.1016/j.marpolbul.2004.09.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Niencheski LF, Windom HL, Baraj B, Wells D, Smith R (2001) Mercury in fish from Patos and Mirim Lagoons, Southern Brazil. Mar Pollut Bull 42(12):1403–1406. doi:10.1016/S0025-326X(01)00219-3 PubMedCrossRefGoogle Scholar
  16. 16.
    Amorim AF, Arfelli CA, Fagundes L (1998) Pelagic elasmobranchs caught by longliners off southern Brazil during 1974–97: an overview. Mar Freshwat Res 49(7):621–632. doi:10.1071/MF97111 CrossRefGoogle Scholar
  17. 17.
    Lessa R, Santana FA, Hazin FH (2004) Age and growth of the blue shark Prionace glauca (Linnaeus, 1758) off northeastern Brazil. Fish Res 66(1):19–30. doi:10.1016/s0165-7836(03)00193-0 CrossRefGoogle Scholar
  18. 18.
    de Azevedo e Silva CE, Azeredo A, Lailson-Brito J, Torres JPM, Malm O (2007) Polychlorinated biphenyls and DDT in swordfish (Xiphias gladius) and blue shark (Prionace glauca) from Brazilian coast. Chemosphere 67(9):S48–S53. doi:10.1016/j.chemosphere.2006.05.089 PubMedCrossRefGoogle Scholar
  19. 19.
    de Pinho AP, Guimarães JRD, Martins AS, Costa PAS, Olavo G, Valentin J (2002) Total mercury in muscle tissue of five shark species from Brazilian offshore waters: effects of feeding habit, sex, and length. Environ Res 89(3):250–258. doi:10.1006/enrs.2002.4365 CrossRefGoogle Scholar
  20. 20.
    Dias ACL, Guimaraes JRD, Malm O, Costa PAS (2008) Total mercury in muscle of the shark Prionace glauca (Linnaeus, 1758) and swordfish Xiphias gladius Linnaeus, 1758, from the South-Southeast coast of Brazil and the implications for public health. Cad Saude Publica 24(9):2063–2070. doi:10.1590/S0102-311X2008000900012 PubMedCrossRefGoogle Scholar
  21. 21.
    Morales-Aizpurúa IC, Tenuta-Filho A, Sakuma AM, Zenebon O (1999) Total mercury contents in shark species commercialized in São Paulo-SP, Brazil. Cienc Tecnol Aliment 19(3):429–432. doi:10.1590/S0101-20611999000300024 CrossRefGoogle Scholar
  22. 22.
    Storelli MM, Giacominelli-Stuffler R, Marcotrigiano GO (2006) Relationship between total mercury concentration and fish size in two pelagic fish species: implications for consumer health. J Food Prot 69(6):1402–1405PubMedGoogle Scholar
  23. 23.
    Branco V, Vale C, Canário J, Santos MN (2007) Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environ Pollut 150(3):373–380. doi:10.1016/j.envpol.2007.01.040 PubMedCrossRefGoogle Scholar
  24. 24.
    Marsico ET, Machado MES, Knoff M, Clemente SCS (2007) Total mercury in sharks along the southern Brazilian Coast. Arq Bras Med Vet Zootec 59(6):1593–1596. doi:10.1590/S0102-09352007000600039 CrossRefGoogle Scholar
  25. 25.
    Santos D Jr, Barbosa F, Tomazelli A, Krug FJ, Nobrega JA, Arruda MAZ (2002) Determination of Cd and Pb in food slurries by GFAAS using cryogenic grinding for sample preparation. Anal Bioanal Chem 373(3):183–189. doi:10.1007/s00216-002-1296-9 PubMedCrossRefGoogle Scholar
  26. 26.
    Zar JH (1999) Bioestatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  27. 27.
    Barrera-García A, O'Hara T, Galván-Magaña F, Méndez-Rodríguez LC, Castellini JM, Zenteno-Savín T (2012) Oxidative stress indicators and trace elements in the blue shark (Prionace glauca) off the east coast of the Mexican Pacific Ocean. Comp Biochem Physiol C 156(2):59–66. doi:10.1016/j.cbpc.2012.04.003 Google Scholar
  28. 28.
    McCord ME, Campana SE (2003) A quantitative assessment of the diet of the blue shark (Prionace glauca) off Nova Scotia Canada. J Northwest Atl Fish Sci 32:57–63. doi:10.2960/J.v32.a4 CrossRefGoogle Scholar
  29. 29.
    Burger J, Gochfeld M, Shukla T, Jeitner C, Burke S, Donio M, Shukla S, Snigaroff R, Snigaroff D, Stamm T, Volz C (2007) Heavy metals in Pacific Cod (Gadus macrocephalus) from the Aleutians: location, age, size, and risk. J Toxic Environ Health A 70:1897–1911. doi:10.1080/15287390701551159 CrossRefGoogle Scholar
  30. 30.
    Storelli MM, Stuffler RG, Marcotrigiano GO (1998) Total mercury in muscle of benthic and pelagic fish from the South Adriatic Sea (Italy). Food Addit Contam 15(8):876–883. doi:10.1080/02652039809374724 PubMedCrossRefGoogle Scholar
  31. 31.
    Dixon R, Jones B (1994) Mercury concentrations in stomach contents and muscle of five fish species from the north east coast of England. Mar Pollut Bull 28(12):741–745. doi:10.1016/0025-326X(94)90333-6 CrossRefGoogle Scholar
  32. 32.
    Zhou JL, Salvador SM, Liu YP, Sequeira M (2001) Heavy metals in the tissues of common dolphins (Delphinus delphis) stranded on the Portuguese coast. Sci Total Environ 273(1–3):61–76. doi:10.1016/S0048-9697(00)00844-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Hoo Fung LA, Antoine JMR, Grant CN, Buddo DSA (2013) Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758). Food Chem Toxicol 60:205–212. doi:10.1016/j.fct.2013.07.044 PubMedCrossRefGoogle Scholar
  34. 34.
    Vorkamp K, Christensen JH, Riget F (2004) Polybrominated diphenyl ethers and organochlorine compounds in biota from the marine environment of East Greenland. Sci Total Environ 331(1–3):143–155. doi:10.1016/j.scitotenv.2004.03.026 PubMedCrossRefGoogle Scholar
  35. 35.
    Cornish AS, Ng WC, Ho VCM, Wong HL, Lam JCW, Lam PKS, Leung KMY (2007) Trace metals and organochlorines in the bamboo shark Chiloscyllium plagiosum from the southern waters of Hong Kong, China. Sci Total Environ 376(1–3):335–345. doi:10.1016/j.scitotenv.2007.01.070 PubMedCrossRefGoogle Scholar
  36. 36.
    Licata P, Trombetta D, Cristani M, Naccari C, Martino D, Calo M, Naccari F (2005) Heavy metals in liver and muscle of bluefin tuna (Thunnus thynnus) caught in the straits of Messina (Sicily, Italy). Environ Monit Assess 107(1–3):239–248. doi:10.1007/s10661-005-2382-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Nadal M, Schuhmacher M, Domingo JL (2007) Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere 66(2):267–276. doi:10.1016/j.chemosphere.2006.05.020 PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Reasi HA, Ababneh FA, Lean DR (2007) Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (δ13C AND δ15N). Environ Toxicol Chem 26(8):1572–1581. doi:10.1897/06-359R.1 PubMedCrossRefGoogle Scholar
  39. 39.
    Kehrig HDA, Costa M, Moreira I, Malm O (2001) Methylmercury and total mercury in estuarine organisms from Rio de Janeiro, Brazil. Environ Sci Pollut Res 8(4):275–279. doi:10.1065/esDr2001.08.073 CrossRefGoogle Scholar
  40. 40.
    Tollefson L, Cordle F (1986) Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the Unites States. Environ Health Perspect 68:203–208. doi:10.1289/ehp.8668203 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Chicourel EL, Sakuma AM, Zenebon O, Tenuta A (2001) Inefficacy of cooking methods on mercury reduction from shark. Arch Latinoam Nutr 51(3):288–292PubMedGoogle Scholar
  42. 42.
    Brazil (1998) Administrative Rule. 685. National Agency of Sanitary VigilanceGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gabriel Gustinelli Arantes de Carvalho
    • 1
  • Iracema Alves Manoel Degaspari
    • 1
  • Vasco Branco
    • 2
  • João Canário
    • 2
  • Alberto Ferreira de Amorim
    • 3
  • Valerie Helen Kennedy
    • 4
  • José Roberto Ferreira
    • 1
    • 3
  1. 1.Laboratório de Química Analítica, Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  2. 2.Marine Environment and Biodiversity UnitNational Institute for Biological Resources (INRB/IPIMAR)LisbonPortugal
  3. 3.Instituto de PescaSantosBrazil
  4. 4.Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK

Personalised recommendations