Advertisement

Biological Trace Element Research

, Volume 163, Issue 1–2, pp 184–192 | Cite as

Development of an Analytical Method for Assessment of Silver Nanoparticle Content in Biological Matrices by Inductively Coupled Plasma Mass Spectrometry

  • Eric P. Poitras
  • Michael A. Levine
  • James M. Harrington
  • Amal S. Essader
  • Timothy R. Fennell
  • Rodney W. Snyder
  • Sherry L. Black
  • Susan S. Sumner
  • Keith E. LevineEmail author
Article

Abstract

Silver nanoparticles (AgNPs) are a broad class of synthetic nanoparticles that are utilized in a wide variety of consumer products as antimicrobial agents. Despite their widespread use, a detailed understanding of their toxicological characteristics and biological and environmental hazards is not available. To support research into the biodistribution and toxicology of AgNPs, it is necessary to develop a suitable method for the assessment of AgNP content in biological samples. Two methods were developed and validated to analyze citrate-coated AgNP content that utilize acid digestion of rodent feces and liver tissue samples, and a third method was developed for the dilution and direct analysis of rodent urine samples. Following sample preparation, the silver content of each sample was determined by inductively coupled plasma mass spectrometry (ICP-MS) to quantify the silver and AgNP levels present. Analysis of rat feces matrix yielded analytical recoveries ranging from 82 to 93 %. Liver tissue spiked with a formulation of AgNPs over a range of concentrations yielded analytical recoveries between 88 and 90 %, providing acceptable accuracy results. The analysis of silver in urine samples exhibited recovery values ranging from 80 to 85 % for AgNP formulations and 62–84 % for standard silver ion solutions. All determinations exhibited a high degree of analytical precision. The results obtained here suggest that matrix interference plays a minimal role in AgNP recovery in feces and liver tissue, while the urine matrix can exhibit a significant effect on the determination of silver content.

Keywords

Silver nanoparticles Bioanalytical Tissue distribution Validation Plasma spectroscopy 

Notes

Acknowledgments

This study was supported, in part, by the National Institute of Environmental Health Sciences (U19 ES019525) and National Institute of Diabetes and Digestive and Kidney Diseases (1U24DK097193-01). The authors would also like to acknowledge RTI International for providing internal funds for the study. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Ethical Statement

The samples analyzed in this study were collected from animals that were maintained under RTI IACUC guidelines, and all protocols were performed with IACUC review and approval.

Conflict of Interest

The authors acknowledge that there are no financial conflicts of interest in this report.

References

  1. 1.
    Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14(7):4757–4780. doi: 10.1166/jnn.2014.9526 PubMedCrossRefGoogle Scholar
  3. 3.
    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287PubMedCrossRefGoogle Scholar
  4. 4.
    Schluesener JK, Schluesener HJ (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87:569–576PubMedCrossRefGoogle Scholar
  5. 5.
    López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56CrossRefGoogle Scholar
  6. 6.
    Yu S-J, Yin Y-G, Liu J-F (2013) Silver nanoparticles in the environment. Environ Sci Process Impact 15:78–92CrossRefGoogle Scholar
  7. 7.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1):76–83. doi: http://dx.doi.org/ 10.1016/j.biotechadv.2008.09.002
  8. 8.
    Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Small 5:1897–1910PubMedCrossRefGoogle Scholar
  9. 9.
    Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XHN (2012) Chem Res Toxicol 25:1029–1046PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, Choi J (2009) Environ Sci Technol 43:3933–3940PubMedCrossRefGoogle Scholar
  11. 11.
    Panacek A, Prucek R, Safarova D, CDittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Environ Sci Technol 45:4974–4979PubMedCrossRefGoogle Scholar
  12. 12.
    Krystek P (2012) A review on approaches to bio distribution studies about gold and silver engineered nanoparticles by inductively coupled plasma mass spectrometry. Microchem J 105:39–43CrossRefGoogle Scholar
  13. 13.
    Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337PubMedCrossRefGoogle Scholar
  14. 14.
    Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106PubMedCrossRefGoogle Scholar
  15. 15.
    Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ (2009) Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Tech 150:259–269CrossRefGoogle Scholar
  16. 16.
    Ahmadi J (2009) Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Appl Sci J 7:24–27Google Scholar
  17. 17.
    van der Zande M, Vandebriel RJ, Doren EV, Kramer E, Rivera ZH, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJB, Hollman PCH, Hendriksen PJM, Marvin HJP, Peijnenburg AACM, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442PubMedCrossRefGoogle Scholar
  18. 18.
    Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewodzka M, Dusinska M, Kruszewski M (2012) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:902–928CrossRefGoogle Scholar
  19. 19.
    Saeki S, Kubota M, Asami T (1996) Determination of silver in water by flame atomic absorption spectrometry. Int J Environ an Ch 64(3):185–192. doi: 10.1080/03067319608028928 CrossRefGoogle Scholar
  20. 20.
    Saeki S, Kubota M, Asami T (1996) Determination of silver in plants by flame atomic absorption spectrometry. Int J Environ an Ch 64(3):179–183. doi: 10.1080/03067319608028927 CrossRefGoogle Scholar
  21. 21.
    Saeki S, Kubota M, Asami T (1995) Determination of silver in soils by atomic-absorption spectrometry. Water Air Soil Poll 83(3–4):253–261. doi: 10.1007/Bf00477356 CrossRefGoogle Scholar
  22. 22.
    Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7Google Scholar
  23. 23.
    Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401(6):1993–2002. doi: 10.1007/s00216-011-5266-y PubMedCrossRefGoogle Scholar
  24. 24.
    Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, Tolaymat T, Ma L, Rogers KR (2013) Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ 447:90–98. doi: 10.1016/j.scitotenv.2012.12.036 PubMedCrossRefGoogle Scholar
  25. 25.
    Huda S, Smoukov SK, Nakanishi H, Kowalczyk B, Bishop K, Grzybowski BA (2010) Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA). ACS Appl Mater Interfaces 2(4):1206–1210PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Garza-Ocanas L, Ferrer DA, Burt J, Diaz-Torres LA, Ramirez Cabrera M, Rodriguez VT, Lujan Rangel R, Romanovicz D, Jose-Yacaman M (2010) Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2(3):204–210. doi: 10.1039/b916107d PubMedCrossRefGoogle Scholar
  27. 27.
    Hong J, Kim S, Lee SH, Jo E, Lee B, Yoon J, Eom I, Kim H, Kim P, Choi K, Lee MY, Seo Y, Kim Y, Lee Y, Choi J, Park K (2014) Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicol 8(4):349–362CrossRefGoogle Scholar
  28. 28.
    Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S, Feswick A, Saint-Louis MA, Hikawa H, Siebein KN, Goering PL (2012) Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology 6(8):912–922PubMedCrossRefGoogle Scholar
  29. 29.
    Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Tox 8:18–31CrossRefGoogle Scholar
  30. 30.
    Krystek P, Ritsema R (2002) Determination of uranium in urine—measurement of isotope ratios and quantification by use of inductively coupled plasma mass spectrometry. Anal Bioanal Chem 374(2):226–229PubMedCrossRefGoogle Scholar
  31. 31.
    Krystek P, Ritsema R (2009) An incident study about acute and chronic human exposure to uranium by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Int J Hyg Environ Health 212(1):76–81PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor A, Day MP, Hill S, Marshall J, Patriarca M, White M (2013) Atomic spectrometry update. Clinical and biological materials, foods and beverages. J Anal At Spectrom 28(4):425–459CrossRefGoogle Scholar
  33. 33.
    Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218(27):4219–4225. doi: 10.1016/j.chroma.2010.12.076 PubMedCrossRefGoogle Scholar
  34. 34.
    Hoque ME, Khosravi K, Newman K, Metcalfe CD (2012) Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J Chromatogr A 1233:109–115. doi: 10.1016/j.chroma.2012.02.011 PubMedCrossRefGoogle Scholar
  35. 35.
    Park J-W, Oh J-H, Kim W-K, Lee S-K (2014) Toxicity of citrate-coated silver nanoparticles differs according to method of suspension preparation. Bull Environ Contam Toxicol 93(1):53–59. doi: 10.1007/s00128-014-1296-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Leavens TL, Monteiro-Riviere NA, Inman AO, Brooks JD, Oldenburg SJ, Riviere JE (2012) In vitro biodistribution of silver nanoparticles in isolated perfused porcine skin flaps. J Appl Toxicol 32(11):913–919. doi: 10.1002/jat.2750 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Levine KE, Stout MD, Ross GT, Essader AS, Perlmutter JM, Grohse PM, Fernando RA, Lang M, Collins BJ (2009) Validation of a method for the determination of total chromium in rat feces by inductively coupled plasma optical emission spectrometry. Anal Lett 42(17):2729–2746CrossRefGoogle Scholar
  38. 38.
    Audi G, Wapstra AH (1995) The 1995 update to the atomic mass evaluation. Nucl Phys A 595(4):409–480CrossRefGoogle Scholar
  39. 39.
    Fabricius A-L, Duester L, Meermann B, Ternes T (2014) ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem 406(2):467–479. doi: 10.1007/s00216-013-7480-2 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wang X, Chang H, Francis R, Olszowsky H, Liu P, Kempf M, Cuttle L, Kravchuk O, Phillips GE, Kimble RM (2009) Silver deposits in cutaneous burn scar tissue is a common phenomenon following application of a silver dressing. J Cutan Pathol 36:788–792PubMedCrossRefGoogle Scholar
  41. 41.
    Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908PubMedCrossRefGoogle Scholar
  42. 42.
    Lankveld DPK, Oomen AG, Krystek P, Neigh A, Troost Jong A, Noorlander CW, Van Eijkeren JCH, Geertsma RE, De Jong WH (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31(32):8350–8361PubMedCrossRefGoogle Scholar
  43. 43.
    Gellein K, Lierhagen S, Brevik PS, Teigen M, Kaur P, Singh T, Flaten TP, Syversen T (2008) Trace element profiles in single strands of human hair determined by HR-ICP-MS. Biol Trace Elem Res 123(1–3):250–260PubMedCrossRefGoogle Scholar
  44. 44.
    Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP (2013) Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol 47(24):14315–14323PubMedCrossRefGoogle Scholar
  45. 45.
    Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, Yin YG (2011) Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem 83(17):6875–6882PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eric P. Poitras
    • 1
  • Michael A. Levine
    • 1
  • James M. Harrington
    • 1
  • Amal S. Essader
    • 1
  • Timothy R. Fennell
    • 2
  • Rodney W. Snyder
    • 2
  • Sherry L. Black
    • 2
  • Susan S. Sumner
    • 2
  • Keith E. Levine
    • 1
    Email author
  1. 1.Trace Inorganics Department, Discovery Science TechnologyRTI InternationalResearch Triangle ParkUSA
  2. 2.Systems and Translational Sciences, Discovery Sciences and TechnologyRTI InternationalResearch Triangle ParkUSA

Personalised recommendations