Advertisement

Biological Trace Element Research

, Volume 160, Issue 3, pp 392–399 | Cite as

The Protective Effect of Physalis peruviana L. Against Cadmium-Induced Neurotoxicity in Rats

  • Ahmed E. Abdel MoneimEmail author
  • Amira A. Bauomy
  • Marwa M. S. Diab
  • Mohamed Tarek M. Shata
  • Ebtesam M. Al-Olayan
  • Manal F. El-Khadragy
Article

Abstract

The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca2+, Cl, DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

Keywords

Physalis peruviana L. Cadmium Neurotoxicity Oxidative stress Rats 

Notes

Acknowledgments

This research project was supported by a grant from the Research Center of Female Center for Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University.

References

  1. 1.
    Othman MS, Nada A, Zaki HS et al (2014) Effect of Physalis peruviana L. On cadmium-induced testicular toxicity in rats. Biol Trace Elem Res 159:278–287PubMedCrossRefGoogle Scholar
  2. 2.
    El-Habit OH, Abdel Moneim AE (2014) Testing the genotoxicity, cytotoxicity, and oxidative stress of cadmium and nickel and their additive effect in male mice. Biol Trace Elem Res 159:278–287CrossRefGoogle Scholar
  3. 3.
    Lopez E, Figueroa S, Oset-Gasque MJ et al (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138(5):901–911PubMedCentralPubMedGoogle Scholar
  4. 4.
    Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013:898034Google Scholar
  5. 5.
    Okuda B, Iwamoto Y, Tachibana H et al (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99(4):263–265PubMedCrossRefGoogle Scholar
  6. 6.
    Shukla GS, Hussain T, Srivastava RS et al (1989) Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Ind Health 27(2):59–69PubMedCrossRefGoogle Scholar
  7. 7.
    Vijaya Kumar Reddy C, Sreeramulu D, Raghunath M (2010) Antioxidant activity of fresh and dry fruits commonly consumed in india. Food Res Int 43(1):285–288CrossRefGoogle Scholar
  8. 8.
    Puente LA, Pinto-Muñoz CA, Castro ES et al (2011) Physalis peruviana linnaeus, the multiple properties of a highly functional fruit: a review. Food Res Int 44(7):1733–1740CrossRefGoogle Scholar
  9. 9.
    Franco LA, Matiz GE, Calle J et al (2007) Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica 27:110–115PubMedCrossRefGoogle Scholar
  10. 10.
    Zavala D, Mauricio Q, Pelayo A et al (2006) Citotoxic effect of Physalis peruviana (capuli) in colon cancer and chronic myeloid leukemia. Anales de la Facultad de Medicina 67(4):283–289Google Scholar
  11. 11.
    Al-Olayan E, Elkhadragy MF, Aref A, et al. (2014) The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of mmp-9 expression. Oxid Med Cell Longev 2014:381413Google Scholar
  12. 12.
    Abdel Moneim AE, El-Deib KM (2012) The possible protective effects of Physalis peruviana on carbon tetrachloride-induced nephrotoxicity in male albino rats. Life Sci J 9(3):1038–1052Google Scholar
  13. 13.
    Kyriakou LG, Tzirogiannis KN, Demonakou MD et al (2013) Gadolinium chloride pretreatment ameliorates acute cadmium-induced hepatotoxicity. Toxicol Ind Health 29(7):624–632PubMedCrossRefGoogle Scholar
  14. 14.
    Fouad AA, Qureshi HA, Yacoubi MT et al (2009) Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem Toxicol 47(11):2863–2870PubMedCrossRefGoogle Scholar
  15. 15.
    Glowinski J, Axelrod J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of h3-norepinephrine and h3-dopamine. J Pharmacol Exp Ther 153(1):30–41PubMedGoogle Scholar
  16. 16.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  17. 17.
    Ciarlone A (1978) Further modification of a fluoromertric method for analyzing brain amines. Microchem J 23:9–12CrossRefGoogle Scholar
  18. 18.
    Murphy VA (1987) Method for determination of sodium, potassium, calcium, magnesium, chloride, and phosphate in the rat choroid plexus by flame atomic absorption and visible spectroscopy. Anal Biochem 161(1):144–151PubMedCrossRefGoogle Scholar
  19. 19.
    Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15n]nitrate in biological fluids. Anal Biochem 126(1):131–138PubMedCrossRefGoogle Scholar
  20. 20.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedCrossRefGoogle Scholar
  21. 21.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77PubMedCrossRefGoogle Scholar
  22. 22.
    Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854PubMedCrossRefGoogle Scholar
  23. 23.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  24. 24.
    Smith AD, Levander OA (2002) High-throughput 96-well microplate assays for determining specific activities of glutathione peroxidase and thioredoxin reductase. Methods Enzymol 347:113–121PubMedCrossRefGoogle Scholar
  25. 25.
    Dringen R, Gutterer JM (2002) Glutathione reductase from bovine brain. Methods Enzymol 348:281–288PubMedCrossRefGoogle Scholar
  26. 26.
    Unsal C, Kanter M, Aktas C, et al. (2013) Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in rats. Toxicol Ind Health. doi:0748233713486960Google Scholar
  27. 27.
    Lafuente A, Gonzalez-Carracedo A, Romero A et al (2005) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155(1):87–96PubMedCrossRefGoogle Scholar
  28. 28.
    Lafuente A, Gonzalez-Carracedo A, Romero A et al (2003) Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res 149(2):200–206PubMedGoogle Scholar
  29. 29.
    Lafuente A, Marquez N, Pazo D et al (2000) Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels of prolactin, gh and acth. Biometals 13(1):47–55PubMedCrossRefGoogle Scholar
  30. 30.
    Pillai A, Priya L, Gupta S (2003) Effects of combined exposure to lead and cadmium on the hypothalamic-pituitary axis function in proestrous rats. Food Chem Toxicol 41(3):379–384PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson H, Petersson-Grawe K, Lindqvist E et al (1997) Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol Teratol 19(2):105–115PubMedCrossRefGoogle Scholar
  32. 32.
    Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143(3):331–340PubMedCrossRefGoogle Scholar
  33. 33.
    Antonio MT, Peinado V, Gonzalez JC et al (2010) Effects of maternal cadmium administration on development of monoaminergic, gabaergic and glutamatergic systems. Environ Toxicol Pharmacol 29(1):87–90PubMedCrossRefGoogle Scholar
  34. 34.
    Giorgetti M, Negri G (2011) Plants from Solanaceae family with possible anxiolytic effect reported on 19th century’s brazilian medical journal. Revista Brasileira de Farmacognosia 21:772–780CrossRefGoogle Scholar
  35. 35.
    Giorgetti M, Negri G, Rodrigues E (2007) Brazilian plants with possible action on the central nervous system: a study of historical sources from the 16th to 19th century. J Ethnopharmacol 109(2):338–347PubMedCrossRefGoogle Scholar
  36. 36.
    Bopaiah CP, Pradhan N, Venkataram BS (2000) Pharmacological study on antidepressant activity of 50 % ethanol extract of a formulated ayurvedic product in rats. J Ethnopharmacol 72(3):411–419PubMedCrossRefGoogle Scholar
  37. 37.
    Abdel Moneim AE (2012) Evaluating the potential role of pomegranate peel in aluminum-induced oxidative stress and histopathological alterations in brain of female rats. Biol Trace Elem Res 150(1–3):328–336PubMedCrossRefGoogle Scholar
  38. 38.
    Shagirtha K, Muthumani M, Prabu SM (2011) Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci 15(9):1039–1050PubMedGoogle Scholar
  39. 39.
    Abdel Moneim AE (2014) Citrus peel extract attenuates acute cyanide poisoning-induced seizures and oxidative stress in rats. CNS Neurol Disord Drug Targets 13(4):638–646Google Scholar
  40. 40.
    Karaca S, Eraslan G (2013) The effects of flaxseed oil on cadmium-induced oxidative stress in rats. Biol Trace Elem Res 155(3):423–430PubMedCrossRefGoogle Scholar
  41. 41.
    Martelli A, Rousselet E, Dycke C et al (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88(11):1807–1814PubMedCrossRefGoogle Scholar
  42. 42.
    Amara S, Douki T, Garrel C et al (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang Y, Sun G, Yang M et al (2011) Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (orthoptera: Acridoidea). Ecotoxicol Environ Saf 74(5):1355–1362PubMedCrossRefGoogle Scholar
  44. 44.
    Kara H, Cevik A, Konar V et al (2007) Protective effects of antioxidants against cadmium-induced oxidative damage in rat testes. Biol Trace Elem Res 120(1–3):205–211PubMedCrossRefGoogle Scholar
  45. 45.
    Lacorte LM, Seiva FR, Rinaldi JC et al (2013) Caffeine reduces cadmium accumulation in the organism and enhances the levels of antioxidant protein expression in the epididymis. Reprod Toxicol 35:137–143PubMedCrossRefGoogle Scholar
  46. 46.
    Renugadevi J, Prabu SM (2010) Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats. Exp Toxicol Pathol 62(5):471–481PubMedCrossRefGoogle Scholar
  47. 47.
    Ahmed LA (2014) Renoprotective effect of Egyptian cape gooseberry fruit (Physalis peruviana L.) against acute renal injury in rats. ScientificWorldJournal 2014:273870PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kalender Y, Kaya S, Durak D et al (2012) Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol 33(2):141–148PubMedCrossRefGoogle Scholar
  49. 49.
    Abdalla FH, Schmatz R, Cardoso AM, et al. (2014) Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: possible involvement of the acetylcholinesterase and Na(+), K(+) - ATPase activities. Physiol Behav 135:152–167Google Scholar
  50. 50.
    Ahmad S, Malik A, Afza N et al (1999) A new withanolide glycoside from Physalis peruviana. J Nat Prod 62(3):493–494PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ahmed E. Abdel Moneim
    • 1
    • 2
    Email author
  • Amira A. Bauomy
    • 2
  • Marwa M. S. Diab
    • 3
  • Mohamed Tarek M. Shata
    • 4
  • Ebtesam M. Al-Olayan
    • 5
  • Manal F. El-Khadragy
    • 2
    • 5
  1. 1.Department of Biochemistry and Molecular Biology, Asturias Institute of BiotechnologyUniversity of OviedoOviedoSpain
  2. 2.Department of Zoology and Entomology, Faculty of ScienceUniversity of HelwanCairoEgypt
  3. 3.Department of Molecular Drug EvaluationNational Organization for Drug Control and Research (NODCAR)GizaEgypt
  4. 4.Department of Internal Medicine, Division of Digestive DiseasesUniversity of Cincinnati College of MedicineCincinnatiUSA
  5. 5.Department of Zoology, Faculty of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations