Skip to main content

Advertisement

Log in

Iron Increases Diabetes-Induced Kidney Injury and Oxidative Stress in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic nephropathy. The present study aimed to determine the extent of the interaction between iron and type 2 diabetes in the kidney. Male rats were randomly assigned into four groups: control, iron (300-mg/kg iron dextran), diabetes (a single dose of intraperitoneal streptozotocin), and iron + diabetes group. Iron supplementation resulted in a higher liver iron content, and diabetic rats showed higher serum glucose compared with control rats, which confirmed the model as iron overload and diabetic. It was found that iron + diabetes group showed a greater degree of kidney pathological changes, a remarkable reduction in body weight, and a significant increase in relative kidney weight and iron accumulation in rat kidneys compared with iron or diabetes group. Moreover, malondialdehyde values in the kidney were higher in iron + diabetes group than in iron or diabetes group, sulfhydryl concentration and glutathione peroxidase activity were decreased by the diabetes and iron + diabetes groups, and protein oxidation and nitration levels were higher in the kidney of iron + diabetes group as compared to iron or diabetes group. However, iron supplementation did not elevate the glucose level of a diabetic further. These results suggested that iron increased the diabetic renal injury probably through increased oxidative/nitrative stress and reduced antioxidant capacity instead of promoting a rise in blood sugar levels; iron might be a potential cofactor of diabetic nephropathy, and strict control of iron would be important under diabetic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6):1446–1454

    Article  CAS  PubMed  Google Scholar 

  2. Özkaya D, Naziroğlu M, Armağan A et al (2011) Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem Funct 29(4):287–293

    Article  PubMed  Google Scholar 

  3. Özcelik D, Nazıroglu M, Tunçdemir M et al (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150:342–349

    Article  PubMed  Google Scholar 

  4. Naziroğlu M (2003) Enhanced testicular antioxidant capacity in streptozotocin-induced diabetic rats: protective role of vitamins C and E and selenium. Biol Trace Elem Res 94(1):61–72

    Article  PubMed  Google Scholar 

  5. Larkins RG, Dunlop ME (1992) The link between hyperglycaemia and diabetic nephropathy. Diabetologia 35(6):499–504

    Article  CAS  PubMed  Google Scholar 

  6. Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Awai M, Narasaki M, Yamanoi Y, Seno S (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95(3):663–673

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Tuomainen TP, Nyyssönen K, Salonen R et al (1997) Body iron stores are associated with serum insulin and blood glucose concentrations: population study in 1,013 eastern Finnish men. Diabetes Care 20(3):426–428

    Article  CAS  PubMed  Google Scholar 

  9. Rajpathak SN, Crandall JP, Wylie-Rosett J et al (2009) The role of iron in type 2 diabetes in humans. BBA Gen Subj 1790(7):671–681

    Article  CAS  Google Scholar 

  10. Jiang R, Manson JE, Meigs JB et al (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. Jama J Am Med Assoc 291(6):711–717

    Article  CAS  Google Scholar 

  11. Bao W, Rong Y, Rong S, Liu L (2012) Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med 10(1):119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ford ES, Cogswell ME (1999) Diabetes and serum ferritin concentration among US adults. Diabetes Care 22(12):1978–1983

    Article  CAS  PubMed  Google Scholar 

  13. Eshed I, Elis A, Lishner M (2001) Plasma ferritin and type 2 diabetes mellitus: a critical review. Endocr Res 27(1–2):91–97

    Article  CAS  PubMed  Google Scholar 

  14. Arredondo M, Fuentes M, Jorquera D et al (2011) Cross-talk between body iron stores and diabetes: iron stores are associated with activity and microsatellite polymorphism of the heme oxygenase and type 2 diabetes. Biol Trace Elem Res 143(2):625–636

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Real JM, Penãrroja G, Castro A et al (2002) Blood letting in high ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes 51:1000–1004

    Article  PubMed  Google Scholar 

  16. Ascherio A, Rimm EB, Giovannucci E et al (2001) Blood donations and risk of coronary heart disease in men. Circulation 103(1):52–57

    Article  CAS  PubMed  Google Scholar 

  17. Cooksey RC, Jones D, Gabrielsen S et al (2010) Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab 298(6):E1236–E1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Minamiyama Y, Takemura S, Kodai S et al (2010) Iron restriction improves type 2 diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Am J Physiol Endocrinol Metab 298(6):E1140–E1149

    Article  CAS  PubMed  Google Scholar 

  19. Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49(3):642–652

    CAS  PubMed  Google Scholar 

  20. Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30(7):1926–1933

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Li H, Lu N et al (2012) Iron increases liver injury through oxidative/nitrative stress in diabetic rats: involvement of nitrotyrosination of glucokinase. Biochimie 94(12):2620–2627

    Article  CAS  PubMed  Google Scholar 

  22. Fung TT, Schulze M, Manson JE et al (2004) Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med 164(20):2235–2240

    Article  PubMed  Google Scholar 

  23. Li H, Li SJ, Zhao Z et al (2008) Body iron stores and dietary iron intake in relation to diabetes in adults in North China. Diabetes Care 31(2):285–286

    PubMed  Google Scholar 

  24. Zhang Y, Huang Y, Deng X et al (2012) Iron overload-induced rat liver injury: involvement of protein tyrosine nitration and the effect of baicalin. Eur J Pharmacol 680(1):95–101

    Article  CAS  PubMed  Google Scholar 

  25. Olynyk JK, O'Neill R, Britton RS, Bacon BR (1994) Determination of hepatic iron concentration in fresh and paraffin-embedded tissue: diagnostic implications. Gastroenterology 106:674–677

    CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  28. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  29. Piperno A (1998) Classification and diagnosis of iron overload. Haematologica 83(5):447–455

    CAS  PubMed  Google Scholar 

  30. Fischer JG, Glauert HP, Yin T et al (2002) Moderate iron overload enhances lipid peroxidation in livers of rats, but does not affect NF-κB activation induced by the peroxisome proliferator, Wy-14,643. J Nutr 132(9):2525–2531

    CAS  PubMed  Google Scholar 

  31. Luan J, Li W, Han J et al (2012) Renal Protection of in vivo administration of Tempol in streptozotocin-induced Diabetic Rats. J Pharmacol Sci 119(2):167–176

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kutlu M, Naziroğlu M, Simşek H et al (2005) Moderate exercise combined with dietary vitamins C and E counteracts oxidative stress in the kidney and lens of streptozotocin-induced diabetic-rat. Int J Vitam Nutr Res 75:71–80

    Article  CAS  PubMed  Google Scholar 

  33. Simşek M, Naziroğlu M, Erdinç A (2005) Moderate exercise with a dietary vitamin C and E combination protects against streptozotocin-induced oxidative damage to the kidney and lens in pregnant rats. Exp Clin Endocrinol Diabetes 113:53–59

    Article  PubMed  Google Scholar 

  34. Orhan N, Berkkan A, Deliorman Orhan D et al (2011) Effects of Juniperus oxycedrus ssp. oxycedrus on tissue lipid peroxidation, trace elements (Cu, Zn, Fe) and blood glucose levels in experimental diabetes. J Ethnopharmacol 133(2):759–764

    Article  PubMed  Google Scholar 

  35. Saravanan G, Ponmurugan P (2011) Ameliorative potential of S-allyl cysteine on oxidative stress in STZ induced diabetic rats. Chem Biol Interact 189(1):100–106

    Article  CAS  PubMed  Google Scholar 

  36. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid Redox Signal 16(6):471–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lu N, Zhang Y, Li H et al (2010) Oxidative and nitrative modifications of α-enolase in cardiac proteins from diabetic rats. Free Radic Biol Med 48(7):873–881

    Article  CAS  PubMed  Google Scholar 

  38. Ishii N, Carmines PK, Yokoba M et al (2013) Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats. Clin Sci 124(8):543–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202(2):199–211

    Article  CAS  PubMed  Google Scholar 

  40. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17(3):171–180

    Article  CAS  PubMed  Google Scholar 

  41. Oteiza PI, Kleinman CG, Demasi M, Bechara EJ (1995) 5-Aminolevulinic acid induces iron release from ferritin. Arch Biochem Biophys 316(1):607–611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant number 30670481), the Fundamental Research Funds for the Central Universities (HUST No. 2013QN156).

Conflict of Interest

The authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, X., Gao, Z. et al. Iron Increases Diabetes-Induced Kidney Injury and Oxidative Stress in Rats. Biol Trace Elem Res 160, 368–375 (2014). https://doi.org/10.1007/s12011-014-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0021-9

Keywords

Navigation