Advertisement

Biological Trace Element Research

, Volume 156, Issue 1–3, pp 79–90 | Cite as

Blood Metals Concentration in Type 1 and Type 2 Diabetics

  • Giovanni Forte
  • Beatrice BoccaEmail author
  • Angela Peruzzu
  • Francesco Tolu
  • Yolande Asara
  • Cristiano Farace
  • Riccardo Oggiano
  • Roberto Madeddu
Article

Abstract

Mechanisms for the onset of diabetes and the development of diabetic complications remain under extensive investigations. One of these mechanisms is abnormal homeostasis of metals, as either deficiency or excess of metals, can contribute to certain diabetic outcomes. Therefore, this paper will report the blood levels of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in subjects with type 1 diabetes (n = 192, mean age 48.8 years, mean disease duration 20.6 years), type 2 diabetes (n = 68, mean age 68.4 years, mean disease duration 10.2 years), and in control subjects (n = 59, mean age 57.2 years), and discuss the results indicating their possible role in diabetes. The metal concentrations were measured by sector field inductively coupled plasma mass spectrometry after microwave-induced acid digestion of blood samples. The accuracy was checked using a blood-based certified reference material, and recoveries of all elements were in the range of 92–101 % of certified values. Type 1 diabetes was found to be associated with Cr (p = 0.02), Mn (p < 0.001), Ni (p < 0.001), Pb (p = 0.02), and Zn (p < 0.001) deficiency, and type 2 diabetes with Cr (p = 0.014), Mn (p < 0.001), and Ni (p < 0.001) deficiency. These deficiencies were appreciated also subdividing the understudied patients for gender and age groups. Furthermore, in type 1 diabetes, there was a positive correlation between Pb and age (p < 0.001, ρ = 0.400) and Pb and BMI (p < 0.001, ρ = 0.309), while a negative correlation between Fe and age (p = 0.002, ρ = −0.218). In type 2 diabetes, there was a negative correlation between Fe and age (p = 0.017, ρ = −0.294) and Fe and BMI (p = 0.026, ρ = −0.301). Thus, these elements may play a role in both forms of diabetes and combined mineral supplementations could have beneficial effects.

Keywords

Type 1 diabetes Type 2 diabetes Blood Metals 

References

  1. 1.
    American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27(Suppl 1):S5–S10Google Scholar
  2. 2.
  3. 3.
  4. 4.
    Meyer JA, Spence DM (2009) A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 1:32–49CrossRefGoogle Scholar
  5. 5.
    Pieper GM, Jordan M, Donglinger LA, Adams MB, Roza AM (1995) Peroxidative stress in diabetic blood vessels. Diabetes 44:884–889PubMedCrossRefGoogle Scholar
  6. 6.
    Fernando GR, Martha RM (2005) Complementary therapies for diabetes; the case for chromium, magnesium and antioxidants. Arch Med Res 36:250–257CrossRefGoogle Scholar
  7. 7.
    Wrobel K, Garay-Sevilla ME, Malacara JM, Fajardo ME, Wrobel K (1999) Effect of chromium on glucose tolerance, serum cholesterol and triglyceride levels in occupational exposure to trivalent speciers in type 2 diabetic patients and in control subjects. Trace Elem Electrolytes 16:199–205Google Scholar
  8. 8.
    Anderson RA (2000) Chromium in the prevention and control of diabetes. Diabetes Metab 26:22–27PubMedGoogle Scholar
  9. 9.
    Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, Caro RA, De Paoli T, Hager A, Boccio J (2001) Zinc and diabetes. Biol Trace Elem Res 81:215–228PubMedCrossRefGoogle Scholar
  10. 10.
    Szaleczky E, Prechl J, Pusztai P, Rosta A, Feher J, Somogyi A (1997) Antioxidant status of patients with well controlled type 1 diabetes. Med Sci Monit 3:163–166Google Scholar
  11. 11.
    Zbronska H, Grzeszczak W, Jendryczko A, Zbronski R, Kuzniewicz R (1995) Activity of superoxide dismutase in erythrocytes and leukocytes and levels of zinc and copper in blood of patients with diabetes. Effects of diabetic treatment on examined parameters. Pol Arch Med Wew 94:228–234Google Scholar
  12. 12.
    Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P (2001) Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract 52:77–84PubMedCrossRefGoogle Scholar
  13. 13.
    Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko RC, Ribas BO, Novelli EL (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, Saafi L, Dissanayake AM, Cowan BR, Young AA, Occleshaw CJ, Chan YK, Leahy FE, Keogh GF, Gamble GD, Allen GR, Pope AJ, Boyd PD, Poppitt SD, Borg TK, Doughty RN, Baker JR (2004) Regeneration of the heart in diabetes by selective copper chelation. Diabetes 53:2501–2508PubMedCrossRefGoogle Scholar
  15. 15.
    Swaminathan S, Alam MG, Fonseca VA, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933PubMedCrossRefGoogle Scholar
  16. 16.
    King GL (2008) The role of inflammatory cytokines in diabetes and its complications. J Periodontol 79:1527–1534PubMedCrossRefGoogle Scholar
  17. 17.
    Nicoloff G, Mutafchiev K, Strashimirov D, Petrova C (2004) Serum manganese in children with diabetes mellitus type 1. Diabetol Croat 33:47–51Google Scholar
  18. 18.
    Akinloye O, Ogunleye K, Oguntibeju OO (2010) Cadmium, lead, arsenic and selenium levels in patients with type 2 diabetes mellitus. Afr J Biotech 9:5189–5195Google Scholar
  19. 19.
    Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KC, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297:1568–1576PubMedCrossRefGoogle Scholar
  20. 20.
    Chen YW, Huang CF, Tsai KS (2006) The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes 55:1614–1624PubMedCrossRefGoogle Scholar
  21. 21.
    Chen YW, Huang CF, Tsai KS (2006) Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19:1080–1085PubMedCrossRefGoogle Scholar
  22. 22.
    Tikare SN, Das Gupta A, Dhundasi SA, Das KK (2008) Effect of antioxidants L-ascorbic acid and α-tocopherol supplementation in nickel exposed hyperglycemic rats. J Basic Clin Physiol Pharmacol 19:89–101PubMedCrossRefGoogle Scholar
  23. 23.
    Gupta S, Ahmad N, Husain MM, Srivastava RC (2000) Involvement of nitric oxide in nickel-induced hyperglycemia in rats. Nitric Oxide 4:129–138PubMedCrossRefGoogle Scholar
  24. 24.
    Tsaih SW, Korrick S, Schwartz J, Amarasiriwardena C, Aro A, Sparrow D, Hu H (2004) Lead, diabetes, hypertension, and renal function: the normative aging study. Environ Health Perspect 112:1178–1182PubMedCrossRefGoogle Scholar
  25. 25.
    Lin JL, Lin-Tan DT, Hsu KH, Yu CC (2003) Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N Engl J Med 348:277–286PubMedCrossRefGoogle Scholar
  26. 26.
    ASL Cagliari. http://www.aslcagliari.it/index.php?xsl=7&s=560&v=2&c=440. Accessed 02 September 2013
  27. 27.
    Alimonti A, Bocca B, Mannella E, Petrucci F, Zennaro F, Cotichini R, D’Ippolito C, Agresti A, Caimi S, Forte G (2005) Assessment of reference values for selected elements in a health urban population. Ann Ist Super Sanita 41:181–187PubMedGoogle Scholar
  28. 28.
    Bocca B, Madeddu R, Asara Y, Tolu P, Marchal JA, Forte G (2011) Assessment of reference ranges for blood Cu, Mn, Se and Zn in a selected Italian population. J Trace Elem Med Biol 25:19–26PubMedCrossRefGoogle Scholar
  29. 29.
    Forte G, Madeddu R, Tolu P, Asara Y, Marchal JA, Bocca B (2011) Reference intervals for blood Cd and Pb in the general population of Sardinia (Italy). Int J Hyg Envir Heal 214:102–109CrossRefGoogle Scholar
  30. 30.
    Adewumi MT, Njoku CH, Abubakar MK, Shetu RA, Bilbis LS (2007) Serum chromium, copper, and manganese levels of diabetic subjects in Katsina, Nigeria. Asian J Biochem 2:284–288CrossRefGoogle Scholar
  31. 31.
    Rodriguez-Flores C, Puga MP, Wrobel K, MaE GS, Wrobel K (2011) Trace elements status in diabetes mellitus type 2: Possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pr 91:333–341CrossRefGoogle Scholar
  32. 32.
    Ekin S, Mert N, Gunduz H, Meral I (2003) Serum sialic acid levels and selected mineral status in patients with type 2 diabetes mellitus. Biol Trace Elem Res 94:193–201PubMedCrossRefGoogle Scholar
  33. 33.
    Cunningham JJ (1998) Micronutrients as nutriceutical interventions in diabetes mellitus. J Am Coll Nutr 17:7–10PubMedCrossRefGoogle Scholar
  34. 34.
    Nsonwu AC, Usoro CAO, Etukudo MH, Usoro IN (2006) Glycemic control and serum and urine levels of chromium and magnesium in diabetics in Calabar, Nigeria. Pak J Nutrit 5:75–78CrossRefGoogle Scholar
  35. 35.
    Chalmers KH (2005) Medical nutrition therapy. In: Kahn CR, Weir GC, King G, Jacobson AM, Moses AC, Smith RJ (eds) Joslin’s diabetes mellitus, 14th edn. Lippincott Williams and Wilkins, Philadelphia, pp pp 611–pp 629Google Scholar
  36. 36.
    Morris BW, Macneil S, Hardisty CA, Heller S, Burgin C, Gray TA (1999) Chromium homeostasis in patients with type II (NIDDM) diabetes. Trace Elem Med Biol 13:57–61CrossRefGoogle Scholar
  37. 37.
    Hellerstein MK (1998) Is chromium supplementation effective in managing type II diabetes? Nut Rev 56:302–306CrossRefGoogle Scholar
  38. 38.
    Anderson RA, Cheng N, Bryden NA, Polansky MM, Cheng N, Chi J, Feng J (1997) Elevated intakes of supplemental chromium improve glucose insulin variables in individuals with type II diabetic patients. Diabetes 46:1786–1791PubMedCrossRefGoogle Scholar
  39. 39.
    Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL (1991) Copper, zinc, manganese and magnesium status and complications of diabetes mellitus. Diabetes Care 14:1050–1056PubMedCrossRefGoogle Scholar
  40. 40.
    Sjogren A, Edvinsson L, Floren CH, Abdulla M (1986) Zinc and copper in striated muscle and body fluids from subjects with diabetes mellitus type I. Nutr Res 6:147–154CrossRefGoogle Scholar
  41. 41.
    Chen MD, Lin PY, Tsou CT, Wang JJ, Lin WH (1995) Selected metal status in patients with noninsulin-dependent diabetes mellitus. Biol Trace Elem Res 50:119–124PubMedCrossRefGoogle Scholar
  42. 42.
    Lal M, Beena SK, Shetty V, Rao GM (2013) Influence of modified levels of plasma magnesium, copper, zinc and iron levels on thiols and protein status in diabetes mellitus and diabetic retinopathy. IJAPBS 2:67–72Google Scholar
  43. 43.
    Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18PubMedCrossRefGoogle Scholar
  44. 44.
    Serdar MA, Bakir F, Haşimi A, Çelik T, Akin O, Kenar L, Aykut O, Yildirimkaya M (2009) Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries 29:35–40PubMedCrossRefGoogle Scholar
  45. 45.
    Olaniyan OO, Awonuga MAM, Ajetunmobi AF, Adeleke IA, Fagbolade OJ, Olabiyi KO, Oyekanmi BA, Osadolor HB (2012) Serum copper and zinc levels in Nigerian type 2 diabetic patients. Afr J Diabetes Med 20:36–38Google Scholar
  46. 46.
    Evliyaoğlu O, Kebapçılar L, Uzuncan N, Kılıçaslan N, Karaca B, Kocaçelebi R, Yensel N (2004) Correlations of serum Cu + 2, Zn + 2, Mg + 2 and HbA1c in type 2 and type 2 diabetes mellitus. Turk J Endocrinol Metab 2:75–79Google Scholar
  47. 47.
    Basaki M, Saeb M, Nazifi S, Shamsaei HA (2012) Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 148:161–164PubMedCrossRefGoogle Scholar
  48. 48.
    Zargar AH, Bashir MI, Masoodi SR, Laway BA, Wani AI, Khan AR, Dar FA (2002) Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J 23:539–542PubMedGoogle Scholar
  49. 49.
    Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W (2001) Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 79:205–219PubMedCrossRefGoogle Scholar
  50. 50.
    Beneš B, Spěváčková V, Šmíd J, Batáriová A, Čejchanová M, Zítková L (2005) Effects of age, bmi, smoking and contraception on levels of Cu, Se and Zn in the blood of the population in the Czech Republic. Cent Eur J Public Health 13:202–207PubMedGoogle Scholar
  51. 51.
    Martin-Lagos F, Navarro-Alarcon M, Terres-Martos C, Lopez-Garcia de la Serrana H, Perez-Valero V, Lopez-Martinez MC (1998) Zinc and copper concentrations in serum from Spanish women during pregnancy. Biol Trace Elem Res 61:61–70PubMedCrossRefGoogle Scholar
  52. 52.
    Chen H, Tan C (2012) Prediction of type-2 diabetes based on several element levels in blood and chemometrics. Biol Trace Elem Res 147:67–74PubMedCrossRefGoogle Scholar
  53. 53.
    Winkler AS, Marsden J, Chaudhuri KR, Hambley H, Watkins PJ (1999) Erythropoietin depletion and anemia in diabetes. Diabet Med 16:813–819PubMedCrossRefGoogle Scholar
  54. 54.
    Van Campenhout A, Van Campenhout C, Lagrou AR, Abrams P, Moorkens GL, Van Gaal B (2006) Impact of diabetes mellitus on the relationships between iron-, inflammatory- and oxidative stress status. Diabetes/Metab Res Rev 22:444–454CrossRefGoogle Scholar
  55. 55.
    Eftekhari M, Mozaffari-Khosravi H, Shidfar F (2009) The relationship between BMI and iron status in iron-deficient adolescent Iranian girls. Public Health Nutr 12:2377–2381PubMedCrossRefGoogle Scholar
  56. 56.
    Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA (2009) Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc 109:297–302PubMedCrossRefGoogle Scholar
  57. 57.
    Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, Deeb L, Grey M, Anderson B, Holzmeister LA, Clark N (2005) Care of children and adolescents with type 1 diabetes. Diabetes Care 28:186–212PubMedCrossRefGoogle Scholar
  58. 58.
    Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, Baig JA, Sarfraz RA (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clinical Pr 80:280–288CrossRefGoogle Scholar
  59. 59.
    Wilhelm M, Ewers U, Schulz C (2004) Revised and new reference values for some trace elements in blood and urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health 207:69–73PubMedCrossRefGoogle Scholar
  60. 60.
    Binns HJ, Campbell C (2007) Brown MJ (2007) Interpreting and managing blood lead levels of less than 10 μg/dL in children and reducing childhood exposure to lead: recommendations of the Centers for Disease Control and Prevention advisory committee on childhood lead poisoning prevention. Pediatrics 120:E1285–E1298PubMedCrossRefGoogle Scholar
  61. 61.
    Popovic M, McNeill FE, Chettle DR, Webber CE, Lee CV, Kaye WE (2005) Impact of occupational exposure on lead levels in women. Environ Health Perspect 113:478–484PubMedCrossRefGoogle Scholar
  62. 62.
    Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsone PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113:1669–1674PubMedCrossRefGoogle Scholar
  63. 63.
    Lin JL, Lin-Tan DT, Yu CC, Li YJ, Huang YY, Li KL (2006) Environmental exposure to lead and progressive diabetic nephropathy in patients with type II diabetes. Kidney Int 69:2049–2056PubMedCrossRefGoogle Scholar
  64. 64.
    Yu CC, Lin JL, Lin-Tan DT (2004) Environmental exposure to lead and progression of chronic renal diseases: A four-year prospective longitudinal study. J Amer Soc Nephrol 15:1016–1022CrossRefGoogle Scholar
  65. 65.
    Mailloux R, Lemire J, Appanna V (2007) Aluminum-induced mitochondrial dysfunction leads to lipid accumulation in human hepatocytes: A link to obesity. Cell Physiol Biochem 20:627–638PubMedCrossRefGoogle Scholar
  66. 66.
    Korc M (1983) Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am J Physiol 254:628–634Google Scholar
  67. 67.
    Baly DL, Curry DL, Keen CL, Hurley LS (1984) Effect of manganese deficiency on insulin secretion and carbohydrate homeostasis in rats. J Nutr 114:1438–1446PubMedGoogle Scholar
  68. 68.
    Clark NA, Teschke K, Rideout K, Copes R (2007) Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, ad levels of other trace elements. Chemosphere 70:155–164PubMedCrossRefGoogle Scholar
  69. 69.
    Finley JW, Johnson PE, Johnson LAK (1994) Sex affects manganese absorption and retention by humans from a diet adequate in manganese. Am J Clin Nutr 60:949–955PubMedGoogle Scholar
  70. 70.
    Meltzer HM, Brantsater AL, Borch-Iohnsen B, Ellingsen DG, Alexander J, Thomassen Y, Stigum H, Ydersbond TA (2010) Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking Norwegian women in the HUNT 2 study. Environ Res 110:497–504PubMedCrossRefGoogle Scholar
  71. 71.
    Lee S-H, Jouihan HA, Cooksey RC, Jones D, Kim HJ, Winge DR, McClain DA (2013) Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 154:1029–1038PubMedCrossRefGoogle Scholar
  72. 72.
    EFSA (2009) Manganese ascorbate, manganese aspartate, manganese bisglycinate and manganese pidolate as sources of manganese added for nutritional purposes to food supplements. The EFSA Journal 1114:1–23Google Scholar
  73. 73.
    Moon S-S (2013) Association of lead, mercury and cadmium with diabetes in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet Med 30:E143–E148PubMedCrossRefGoogle Scholar
  74. 74.
    Chang JW, Chen HL, Su HJ, Liao PC, Guo HR, Lee CC (2011) Simultaneous exposure of non-diabetics to high levels of dioxins and mercury increases their risk of insulin resistance. J Hazard Mater 185:749–755PubMedCrossRefGoogle Scholar
  75. 75.
    Alimonti B, Bocca D, Mattei A, Pino. Programme for biomonitoring the Italian population exposure (PROBE): internal dose of metals. Roma: Istituto Superiore di Sanità; 2011. (Rapporti ISTISAN 11/9)Google Scholar
  76. 76.
    Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M (2011) Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int J Hyg Env Health 215:26–35CrossRefGoogle Scholar
  77. 77.
    Centers for Disease Control and Prevention (2009) Fourth National Report on Human Exposure to Environmental Chemicals. CDC, AtlantaGoogle Scholar
  78. 78.
    Yarat A, Nokay S, Ipubuker A, Emekli N (1992) Serum nickel levels of diabetic patients and healthy controls by AAS with a graphite furnace. Biol Trace Elem Res 35:273–280PubMedCrossRefGoogle Scholar
  79. 79.
    Cartañà J, Arola L (1992) Nickel-induced hyperglycaemia: the role of insulin and glucagon. Toxicology 71:181–192PubMedCrossRefGoogle Scholar
  80. 80.
    Novelli EL, Rodrigues NL, Ribas BO (1988) Effect of nickel chloride on streptozotocin-induced diabetes in rats. Can J Physiol Pharmacol 66:663–665PubMedCrossRefGoogle Scholar
  81. 81.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241PubMedCrossRefGoogle Scholar
  82. 82.
    Douillet C, Tabib A, Bost M, Accominotti M, Borson-Chazot F, Ciavatti M (1996) A selenium supplement associated or not with vitamin E delays early renal lesions in experimental diabetes in rats. Proc Soc Exp Biol Med 211:323–331PubMedCrossRefGoogle Scholar
  83. 83.
    Mueller AS, Pallauf J (2006) Compendium of the antidiabetic effects of supranutritional selenate doses: in vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17:548–560PubMedCrossRefGoogle Scholar
  84. 84.
    Stapleton SR (2000) Selenium: an insulin-mimetic. Cell Mol Life Sci 57:1874–1879PubMedCrossRefGoogle Scholar
  85. 85.
    Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834PubMedCrossRefGoogle Scholar
  86. 86.
    Barceloux DG (1999) Selenium. J Toxicol, Clin Toxicol 37:145–172CrossRefGoogle Scholar
  87. 87.
    HBC – Human Biomonitoring Commission (Kommission Human-Biomonitoring des Umweltbundesamtes) (2002) Selen und Human-Biomonitoring. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 45:190–195CrossRefGoogle Scholar
  88. 88.
    Kljai K, Runje R (2001) Selenium and glycogen levels in diabetic patients. Biol Trace Elem Res 83:223–229PubMedCrossRefGoogle Scholar
  89. 89.
    Wang WC, Makela AL, Nanto V, Makela P (1995) Serum selenium levels in diabetic children. Biol Trace Element Res 47:355–364CrossRefGoogle Scholar
  90. 90.
    Tabar MB (2012) Determination of Serum Selenium in Patients with Type II Diabetes Mellitus. Middle-East J Sci Res 12:433–435Google Scholar
  91. 91.
    Asare GA, Osae S, Nortey ENN, Yambire FK, Amedonu E, Doku D, Annan Y (2013) Evaluation of serum metallothionein-1, selenium, zinc, and copper in Ghanaian type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 33:86–95CrossRefGoogle Scholar
  92. 92.
    Kafai MR, Ganji V (2003) Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third national health and nutrition examination survey, 1988–1994. J Trace Elem Med Biol 17:13–18PubMedCrossRefGoogle Scholar
  93. 93.
    Di Silvestro RA (2000) Zinc in relation to diabetes and oxidative disease. J Nutr 130:1509S–1511SGoogle Scholar
  94. 94.
    Cunningham JJ, Fu A, Mearkle PL, Brown RG (1994) Hyperzincurea in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high dose zinc supplementation. Metabolism 43:1558–1562PubMedCrossRefGoogle Scholar
  95. 95.
    Al-Maroof RA, Al-Sharbatti SS (2006) Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J 27:344–350PubMedGoogle Scholar
  96. 96.
    Chia S-E, Ong C-N, Chua L-H, Ho L-M, Tay S-K (2000) Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 21:53–57PubMedGoogle Scholar
  97. 97.
    WHO (2001) Environmental Health Criteria 221. World Health Organization, Zinc. GenevaGoogle Scholar
  98. 98.
    Wood RJ, Suter PM, Russell RM (1995) Mineral requirements of elderly people. Am J Clin Nutr 62:493–505PubMedGoogle Scholar
  99. 99.
    Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(suppl):621–624Google Scholar
  100. 100.
    Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9–25PubMedCrossRefGoogle Scholar
  101. 101.
    Jansen J, Karges W, Rink L (2009) Zinc and diabetes - clinical links and molecular mechanisms. J Nutr Biochem 20:399–417PubMedCrossRefGoogle Scholar
  102. 102.
    Pedrosa LFC, Ferreira SRG, Cesarini PR, Cozzolino SM (1999) Influence of glycemic control on zinc urinary excretion in patients with type 1 diabetes. Diabetes Care 22:362–363PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giovanni Forte
    • 1
  • Beatrice Bocca
    • 1
    • 5
    Email author
  • Angela Peruzzu
    • 2
  • Francesco Tolu
    • 3
  • Yolande Asara
    • 2
  • Cristiano Farace
    • 2
  • Riccardo Oggiano
    • 2
  • Roberto Madeddu
    • 2
    • 4
  1. 1.Italian National Institute of HealthRomeItaly
  2. 2.Department of Biomedical Sciences-HistologyUniversity of SassariSassariItaly
  3. 3.Endocrinology UnitLocal Health UnitSassariItaly
  4. 4.National Institute of Biostructures and BiosystemsRomeItaly
  5. 5.Department of Environment and Primary PreventionItalian National Institute of HealthRomeItaly

Personalised recommendations