Skip to main content
Log in

Effect of Selenium on Fluoride-Induced Changes in Synaptic Plasticity in Rat Hippocampus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to further explore the effect of selenium on fluoride-induced changes in the synaptic plasticity in rat hippocampus. Animals were randomly divided into control group, F group (sodium fluoride: 50 mg/L), three Se groups (sodium selenite: 0.375, 0.75, and 1.5 mg/L), and three F + Se groups (sodium fluoride: 50 mg/L; sodium selenite: 0.375, 0.75, and 1.5 mg/L) and subjected to an exposure time of 6 months. The changes in synaptic plasticity in rat hippocampus were observed by electron microscopy. Compared with the fluoride group, the length of the synaptic active zone and the thickness of the postsynaptic density (PSD) increased significantly, whereas the width of the synaptic cleft decreased with high significance in the F + Se (0.75 mg/L) group. Moreover, the nitric oxide synthase activity and the nitric oxide content in the hippocampus decreased significantly in the F + Se (0.75 and 1.5 mg/L) groups. Furthermore, reverse transcriptase polymerase chain reaction and Western blot analyses showed that postsynaptic density-93 (PSD-93) expression in the hippocampus was increased significantly, whereas postsynaptic density-95 (PSD-95) expression decreased significantly in the fluoride group compared with the control group. The PSD-93 expression was inhibited in the three F + Se groups, whereas the opposite result was observed in PSD-95 expression. Based on the results, the optimal selenium dosage range that can antagonize the neurotoxicity of fluorosis is from 0.75 to 1.5 mg/L. The changes in PSD-93 expression may be the key factor to fluoride-induced central nervous toxicity and the effect of selenium intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma JD, Sohu D, Jain P (2009) Prevalence of neurological manifestation in a human population exposed to fluoride in drinking water. Fluoride 42(2):127–132

    CAS  Google Scholar 

  2. Shivarajashankara YM, Shivashankara AR, Bhat PG et al (2002) Brain lipid peroxidation and antioxidant systems of young rats in chronic fluoride intoxication. Fluoride 35(3):197–203

    CAS  Google Scholar 

  3. Shashi A (2003) Histopathological investigation of fluoride induced neurotoxicity in rabbits. Fluoride 36(2):95–105

    CAS  Google Scholar 

  4. Bhatnagar M, Rao P, Sushma J et al (2002) Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice. Indian J Exp Biol 40(5):546–554

    PubMed  CAS  Google Scholar 

  5. Bhatnagar M, Rao P, Saxena A et al (2006) Biochemical changes in brain and other tissues of young adult female mice from fluoride in their drinking water. Fluoride 39(4):280–284

    CAS  Google Scholar 

  6. Wu CX, Gu XL, Ge YM et al (2006) Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats. Fluoride 39(4):274–279

    CAS  Google Scholar 

  7. Chirumari K, Reddy PK (2007) Dose-dependent effects of fluoride on neurochemical milieu in the hippocampus and neocortex of rat brain. Fluoride 40(2):101–110

    CAS  Google Scholar 

  8. Xiang Q, Liang Y, Chen L et al (2003) Effect of fluoride in drinking water on children's intelligence. Fluoride 36(2):84–94

    CAS  Google Scholar 

  9. Lu Y, Sun ZR, Wu LN et al (2000) Effect of high-fluoride water on intelligence in children. Fluoride 33(2):74–78

    CAS  Google Scholar 

  10. Sho K, Masahiko S, Nozomu M (2012) Protein oxidation inhibits NO-mediated signaling pathway for synaptic plasticity. Neurobiol Aging 33(3):535–545

    Article  Google Scholar 

  11. Hawkins RD (2008) Transsynaptic signaling by NO during learning-related synaptic plasticity. Learn Mem Compr Ref 4:793–802

    Article  Google Scholar 

  12. Kihoon H, Eunjoon K (2008) Synaptic adhesion molecules and PSD-95. Prog Neurobiol 84:263–283

    Article  Google Scholar 

  13. Samah SO, Zeynab KE (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol 64(7–8):813–819

    Google Scholar 

  14. Lewin MH, Arthur JR, Riemersma RA et al (2002) Selenium supplementation acting through the induction of thioredoxin reductase and glutathione peroxidase protects the human endothelial cell line EAhy926 from damage by lipid hydroperoxides. Biochim Biophys Acta 1593(1):85–92

    Article  PubMed  CAS  Google Scholar 

  15. Feng P, Wei JR, Zhang ZG (2011) Intervention of selenium on chronic fluorosis-induced injury of blood antioxidant capacity in rats. Biol Trace Elem Res 144(1–3):1024–1031

    Article  PubMed  CAS  Google Scholar 

  16. Feng P, Wei JR, Zhang ZG (2012) Influence of selenium and fluoride on blood antioxidant capacity of rats. Exp Toxicol Pathol 64(6):565–568

    Article  PubMed  CAS  Google Scholar 

  17. Essatara MB, Morley JE, Levine AS et al (1984) The role of the endogenous opiates in zinc deficiency anorexia. Physiol Behav 32(3):475–478

    Article  PubMed  CAS  Google Scholar 

  18. Chen YC, Han TZ, Shen JX et al (1999) A quantitative study on the synaptic ultrastructural alterations in visual cortex in the maintenance of ltp. Acta Physiol Sin 51(1):73–79

    CAS  Google Scholar 

  19. Kobayashi CA, Leite AL, Silva TL et al (2009) Proteomic analysis of kidney in rats chronically exposed to fluoride. Chem-Biol Inter 180(2):305–311

    Article  CAS  Google Scholar 

  20. Xiong XZ, Liu JL, He WH et al (2007) Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environ Res 103(1):112–116

    Article  PubMed  CAS  Google Scholar 

  21. Zhu WJ, Zhang J, Zhang ZG (2011) Effects of fluoride on synaptic membrane fluidity and PSD-95 expression level in rat hippocampus. Biol Tr Elem Res 139(2):197–203

    Article  CAS  Google Scholar 

  22. Luo HJ, Ji YH (2000) Biological role and significance of selenium. Stud Trace Elem Health 17(2):70–72

    Google Scholar 

  23. Han B, Yoon SS, Wu PF et al (2006) Role of selenium in alteration of erythrocyte parameters in bovine fluorosis. Asian Australas J Anim Sci 19(6):865–872

    CAS  Google Scholar 

  24. Abdella A, Gan L, Liu Q et al (2003) The antioxidation of breviscapine and its antagonist of selenium on liver toxicity in rat. Chin Pharmacol Bull 19(1):113–115

    Google Scholar 

  25. Wang GZ, Niu ZX (2011) The progress study of toxicity of selenium. Northwest Pharm J 25(3):237–238

    Google Scholar 

  26. Zhu WJ, Zhang ZG, Shen XY (2009) Pathogenesis of fluorosis and the role of selenium against fluoride. Chin J Endemiol 28(6):704–706

    CAS  Google Scholar 

  27. Holger S, Lirija A, Esra B et al (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40(9):1513

    Article  Google Scholar 

  28. Zhang ZG, Shen XY, Xu XL (2001) Effects of selenium on the damage of learning-memory ability of mice induced by fluoride. J Hyg Res 30(3):144–146

    CAS  Google Scholar 

  29. Frick KM, Fernandez SM (2003) Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 24(4):615–626

    Article  PubMed  CAS  Google Scholar 

  30. Xu XH (2003) Investigation on effects of puerarin against memory impairment in mice induced by chronic alcoholism. Chin J Pharm 38(1):31–34

    CAS  Google Scholar 

  31. Zhang ZG, Xu XL, Shen XY et al (1999) Effect of fluoride exposure on synaptic structure of brain areas related to learning–memory in mice. J Hyg Res 28(4):210–212

    Google Scholar 

  32. Wyneken U, Smalla KH, Marengo JJ et al (2001) Kainate-induced seizures alter protein composition and N-methyl-D-aspartic acid receptor function of rat forebrain postsynaptic densities. Neuroscience 102(1):65–74

    Article  PubMed  CAS  Google Scholar 

  33. Myried N, Zhang WN, Joram F et al (2007) Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol Aging 28(1):143–155

    Article  Google Scholar 

  34. Shashi A, Singh JP, Thapar SP (1994) Effect of long-term administration of fluoride on levels of protein, free amino acids, and RNA in rabbit brain. Fluoride 27(3):155–159

    CAS  Google Scholar 

  35. Çiğdem GS, Serdar K, Orhan A et al (2012) Correlation between hippocampal levels of neural, epithelial, and inducible NOS and spatial learning skills in rats. Behav Brain Res 235(2):326–333

    Article  Google Scholar 

  36. Hassan HA, Yousef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food Chem Toxicol 47(9):2332–2337

    Article  PubMed  CAS  Google Scholar 

  37. Mittal M, Flora SJ (2006) Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic, and fluoride levels in male mice. Chem Biol Interact 162(2):128–139

    Article  PubMed  CAS  Google Scholar 

  38. Boeckers TM (2006) The postsynaptic density. Cell Tissu Res 326(2):409–422

    Article  CAS  Google Scholar 

  39. Holly JC, Ann EF, Seth GN et al (2008) Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity. J Physiol 586(24):5885–5900

    Article  Google Scholar 

  40. Lin CS, Tao PL, Jong YJ et al (2009) Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 158(4):1326–1337

    Article  PubMed  CAS  Google Scholar 

  41. Du CP, Gao J, Tai JM et al (2009) Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischemia. J Biochem 417(1):277–285

    Article  CAS  Google Scholar 

  42. Xu WF (2011) PSD-95-like membrane associated guanylate kinases (PSDMAGUKs) and synaptic plasticity. Curr Opin Neurobiol 21(2):306–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 81273015).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, W., Miao, K., Li, T. et al. Effect of Selenium on Fluoride-Induced Changes in Synaptic Plasticity in Rat Hippocampus. Biol Trace Elem Res 155, 253–260 (2013). https://doi.org/10.1007/s12011-013-9773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9773-x

Keywords

Navigation