Biological Trace Element Research

, Volume 153, Issue 1–3, pp 257–268 | Cite as

Biochemical, Histological, and Memory Impairment Effects of Chronic Copper Toxicity: A Model for Non-Wilsonian Brain Copper Toxicosis in Wistar Rat

  • Amit Pal
  • Rama Kumari Badyal
  • Rakesh Kumar Vasishta
  • Savita Verma Attri
  • Babu Ram Thapa
  • Rajendra Prasad


Animal models of copper toxicosis rarely exhibit neurological impairments and increased brain copper accumulation impeding the development of novel therapeutic approaches to treat neurodegenerative diseases having high brain Cu content. The aim of this study was to investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on copper and zinc levels in the liver and hippocampus, on biochemical parameters, and on neurobehavioral functions (by Morris water maze) of male Wistar rats. Copper-administered animals exhibited significantly decreased serum acetylcholinesterase (AChE) activity and impaired neuromuscular coordination and spatial memory compared to control rats. Copper-intoxicated rats showed significant increase in liver and hippocampus copper content (99.1 and 73 % increase, respectively), 40.7 % reduction in hepatic zinc content, and interestingly, 77.1 % increase in hippocampus zinc content with concomitant increase in copper and zinc levels in serum and urine compared to control rats. Massive grade 4 copper depositions and grade 1 copper-associated protein in hepatocytes of copper-intoxicated rats were substantiated by rhodanine and orcein stains, respectively. Copper-intoxicated rats demonstrated swelling and increase in the number of astrocytes and copper deposition in the choroid plexus, with degenerated neurons showing pyknotic nuclei and dense eosinophilic cytoplasm. In conclusion, the present study shows the first evidence in vivo that chronic copper toxicity causes impaired spatial memory and neuromuscular coordination, swelling of astrocytes, decreased serum AChE activity, copper deposition in the choroid plexus, neuronal degeneration, and augmented levels of copper and zinc in the hippocampus of male Wistar rats.


Copper intoxication Cognition Neurobehavioral Hippocampus 



The authors acknowledge the financial support provided by the Indian Council of Medical Research (I.C.M.R., New Delhi) as JRF/SRF to Mr. Amit Pal. The authors are thankful to Professor K.D. Gill for the guidance in carrying out the neurobehavioral studies and Dr. Jayagandhan J. for the suggestions and revision of the manuscript. The authors also acknowledge the support of Mr. Charan Singh (for the staining studies), Mr. Rakesh Mohindra (for the statistics), and Mrs. Minni (for the metal analysis).

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12011_2013_9665_Fig9_ESM.jpg (32 kb)
Supplementary Fig. 1a
12011_2013_9665_MOESM2_ESM.tif (178 kb)
High resolution image (TIFF 178 kb)
12011_2013_9665_Fig10_ESM.jpg (6 kb)
Supplementary Fig. 1b
12011_2013_9665_MOESM3_ESM.tif (54 kb)
High resolution image (TIFF 54 kb)
12011_2013_9665_Fig11_ESM.jpg (30 kb)
Supplementary Fig. 2
12011_2013_9665_MOESM4_ESM.tif (1.3 mb)
High resolution image (TIFF 1283 kb)
12011_2013_9665_Fig12_ESM.jpg (57 kb)
Supplementary Fig. 3
12011_2013_9665_MOESM5_ESM.tif (2.2 mb)
High resolution image (TIFF 2277 kb)
12011_2013_9665_Fig13_ESM.jpg (27 kb)
Supplementary Fig. 4
12011_2013_9665_MOESM6_ESM.tif (1.4 mb)
High resolution image (TIFF 1433 kb)
12011_2013_9665_Fig14_ESM.jpg (30 kb)
Supplementary Fig. 5
12011_2013_9665_MOESM7_ESM.tif (1.5 mb)
High resolution image (TIFF 1576 kb)
12011_2013_9665_Fig15_ESM.jpg (47 kb)
Supplementary Fig. 6
12011_2013_9665_MOESM8_ESM.tif (2.1 mb)
High resolution image (TIFF 2145 kb)
12011_2013_9665_Fig16_ESM.jpg (26 kb)
Supplementary Fig. 7
12011_2013_9665_MOESM9_ESM.tif (1.1 mb)
High resolution image (TIFF 1106 kb)
12011_2013_9665_Fig17_ESM.jpg (157 kb)
Supplementary Fig. 8
12011_2013_9665_MOESM10_ESM.tif (667 kb)
High resolution image (TIFF 666 kb)


  1. 1.
    Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337. doi: 10.1146/annurev.neuro.30.051606.094232 PubMedCrossRefGoogle Scholar
  2. 2.
    Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858SPubMedGoogle Scholar
  3. 3.
    Vonk WI, Wijmenga C, van de Sluis B (2008) Relevance of animal models for understanding mammalian copper homeostasis. Am J Clin Nutr 88(3):840S–845SPubMedGoogle Scholar
  4. 4.
    Wu J, Forbes JR, Chen HS, Cox DW (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet 7(4):541–545. doi: 10.1038/ng0894-541 PubMedCrossRefGoogle Scholar
  5. 5.
    Howell JS (1959) Histochemical demonstration of copper in copper-fed rats and in hepatolenticular degeneration. J Pathol Bacteriol 77(2):473–484PubMedCrossRefGoogle Scholar
  6. 6.
    Toyokuni S, Okada S, Hamazaki S, Fujioka M, Li JL, Midorikawa O (1989) Cirrhosis of the liver induced by cupric nitrilotriacetate in Wistar rats. An experimental model of copper toxicosis. Am J Pathol 134(6):1263–1274PubMedGoogle Scholar
  7. 7.
    Klein D, Michaelsen S, Sato S, Luz A, Stampfl A, Summer KH (1997) Binding of Cu to metallothionein in tissues of the LEC rat with inherited abnormal copper accumulation. Arch Toxicol 71(5):340–343PubMedCrossRefGoogle Scholar
  8. 8.
    Fujiwara N, Iso H, Kitanaka N, Kitanaka J, Eguchi H, Ookawara T, Ozawa K, Shimoda S, Yoshihara D, Takemura M, Suzuki K (2006) Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun 349(3):1079–1086. doi: 10.1016/j.bbrc.2006.08.139 PubMedCrossRefGoogle Scholar
  9. 9.
    Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the Morris water maze. Brain Res 1256:69–75. doi: 10.1016/j.brainres.2008.12.041 PubMedCrossRefGoogle Scholar
  10. 10.
    Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127(1):45–52. doi: 10.1007/s12011-008-8219-3 PubMedCrossRefGoogle Scholar
  11. 11.
    Pandit A, Bhave S (1996) Present interpretation of the role of copper in Indian childhood cirrhosis. Am J Clin Nutr 63(5):830S–835SPubMedGoogle Scholar
  12. 12.
    Faa G, Liguori C, Columbano A, Diaz G (1987) Uneven copper distribution in the human newborn liver. Hepatology 7(5):838–842PubMedCrossRefGoogle Scholar
  13. 13.
    Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2000) Determination of major and trace elements in the liver of Wistar rats by inductively coupled plasma-atomic emission spectrometry and mass spectrometry. Lab Anim 34(1):97–105PubMedCrossRefGoogle Scholar
  14. 14.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. doi: 10.1038/nprot.2006.116 PubMedCrossRefGoogle Scholar
  15. 15.
    Frasco MF, Fournier D, Carvalho F, Guilhermino L (2005) Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10(5):360–375. doi: 10.1080/13547500500264660 PubMedCrossRefGoogle Scholar
  16. 16.
    Narasaki M (1980) Laboratory and histological similarities between Wilson’s disease and rats with copper toxicity. Acta Med Okayama 34(2):81–90PubMedGoogle Scholar
  17. 17.
    Wilken H (1961) Urinary copper excretion in pregnancy. Klin Wochenschr 39:147–149PubMedCrossRefGoogle Scholar
  18. 18.
    Cefola M, Tompa AS, Celiano AV, Gentile PS (1962) Coordination compounds. II. Trends in the stability of some rare earth chelates. Inorg Chem (US) 1:290–293CrossRefGoogle Scholar
  19. 19.
    Ravin HA (1961) An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 58:161–168PubMedGoogle Scholar
  20. 20.
    Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95PubMedCrossRefGoogle Scholar
  21. 21.
    Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc (Baltimore) 46(3):208–209CrossRefGoogle Scholar
  22. 22.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. doi: 10.1016/0165-0270(84)90007-4 PubMedCrossRefGoogle Scholar
  23. 23.
    Prasad R, Kaur G, Walia BN (1998) A critical evaluation of copper metabolism in Indian Wilson’s disease children with special reference to their phenotypes and relatives. Biol Trace Elem Res 65(2):153–165. doi: 10.1007/bf02784267 PubMedCrossRefGoogle Scholar
  24. 24.
    Shikata T, Uzawa T, Yoshiwara N, Akatsuka T, Yamazaki S (1974) Staining methods of Australia antigen in paraffin section—detection of cytoplasmic inclusion bodies. Jpn J Exp Med 44(1):25–36PubMedGoogle Scholar
  25. 25.
    Lindquist RR (1969) Studies on the pathogenesis of hepatolenticular degeneration. II. Cytochemical methods for the localization of copper. Arch Pathol 87(4):370–379PubMedGoogle Scholar
  26. 26.
    Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Churchill Livingstone/Elsevier, EdinburghGoogle Scholar
  27. 27.
    Johnson GF, Gilbertson SR, Goldfischer S, Grushoff PS, Sternlieb I (1984) Cytochemical detection of inherited copper toxicosis of Bedlington terriers. Vet Pathol 21(1):57–60PubMedGoogle Scholar
  28. 28.
    Evans J, Newman SP, Sherlock S (1980) Observations on copper associated protein in childhood liver disease. Gut 21(11):970–976PubMedCrossRefGoogle Scholar
  29. 29.
    Rivera-Mancia S, Perez-Neri I, Rios C, Tristan-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199. doi: 10.1016/j.cbi.2010.04.010 PubMedCrossRefGoogle Scholar
  30. 30.
    Kodama H, Okabe I, Yanagisawa M, Nomiyama H, Nomiyama K, Nose O, Kamoshita S (1988) Does CSF copper level in Wilson disease reflect copper accumulation in the brain? Pediatr Neurol 4(1):35–37PubMedCrossRefGoogle Scholar
  31. 31.
    Weisner B, Hartard C, Dieu C (1987) CSF copper concentration: a new parameter for diagnosis and monitoring therapy of Wilson’s disease with cerebral manifestation. J Neurol Sci 79(1–2):229–237PubMedCrossRefGoogle Scholar
  32. 32.
    Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6(4):221–230. doi: 10.1006/nbdi.1999.0250 PubMedCrossRefGoogle Scholar
  33. 33.
    Walshe JM, Gibbs KR (1987) Brain copper in Wilson’s disease. Lancet 2(8566):1030PubMedCrossRefGoogle Scholar
  34. 34.
    Pietrangelo A, Panduro A, Chowdhury JR, Shafritz DA (1992) Albumin gene expression is down-regulated by albumin or macromolecule infusion in the rat. J Clin Invest 89(6):1755–1760. doi: 10.1172/jci115778 PubMedCrossRefGoogle Scholar
  35. 35.
    Choi BS, Zheng W (2009) Copper transport to the brain by the blood–brain barrier and blood–CSF barrier. Brain Res 1248:14–21. doi: 10.1016/j.brainres.2008.10.056 PubMedCrossRefGoogle Scholar
  36. 36.
    Monnot AD, Behl M, Ho S, Zheng W (2011) Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency. Toxicol Appl Pharmacol 256(3):249–257. doi: 10.1016/j.taap.2011.02.003 PubMedCrossRefGoogle Scholar
  37. 37.
    Jain S, Scheuer PJ, Archer B, Newman SP, Sherlock S (1978) Histological demonstration of copper and copper-associated protein in chronic liver diseases. J Clin Pathol 31(8):784–790PubMedCrossRefGoogle Scholar
  38. 38.
    Zatta P, Frank A (2007) Copper deficiency and neurological disorders in man and animals. Brain Res Rev 54(1):19–33. doi: 10.1016/j.brainresrev.2006.10.001 PubMedCrossRefGoogle Scholar
  39. 39.
    Gouider-Khouja N (2009) Wilson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S126–S129. doi: 10.1016/s1353-8020(09)70798-9 PubMedCrossRefGoogle Scholar
  40. 40.
    Haywood S, Paris J, Ryvar R, Botteron C (2008) Brain copper elevation and neurological changes in north ronaldsay sheep: a model for neurodegenerative disease? J Comp Pathol 139(4):252–255. doi: 10.1016/j.jcpa.2008.06.008 PubMedCrossRefGoogle Scholar
  41. 41.
    Mikol J, Vital C, Wassef M, Chappuis P, Poupon J, Lecharpentier M, Woimant F (2005) Extensive cortico-subcortical lesions in Wilson’s disease: clinico-pathological study of two cases. Acta Neuropathol 110(5):451–458. doi: 10.1007/s00401-005-1061-1 PubMedCrossRefGoogle Scholar
  42. 42.
    Hidalgo J, Penkowa M, Espejo C, Martinez-Caceres EM, Carrasco J, Quintana A, Molinero A, Florit S, Giralt M, Ortega-Aznar A (2006) Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation. Exp Biol Med (Maywood) 231(9):1450–1458Google Scholar
  43. 43.
    Tiffany-Castiglioni E, Hong S, Qian Y (2011) Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci 29(8):811–818. doi: 10.1016/j.ijdevneu.2011.09.004 PubMedCrossRefGoogle Scholar
  44. 44.
    Tiffany-Castiglion E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22(5):577–592PubMedCrossRefGoogle Scholar
  45. 45.
    White RF, Proctor SP (1992) Research and clinical criteria for development of neurobehavioral test batteries. J Occup Med 34(2):140–148PubMedCrossRefGoogle Scholar
  46. 46.
    D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90PubMedCrossRefGoogle Scholar
  47. 47.
    Alkon DL, Amaral DG, Bear MF, Black J, Carew TJ, Cohen NJ, Disterhoft JF, Eichenbaum H, Golski S, Gorman LK et al (1991) Learning and memory. FESN Study Group. Brain Res Brain Res Rev 16(2):193–220PubMedCrossRefGoogle Scholar
  48. 48.
    Halatek T, Lutz P, Krajnow A, Stetkiewicz J, Domeradzka K, Swiercz R, Wasowicz W (2011) Assessment of neurobehavioral and biochemical effects in rats exposed to copper smelter dusts. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 46(3):230–241. doi: 10.1080/10934529.2011.535407 CrossRefGoogle Scholar
  49. 49.
    Olson DL, Christensen GM (1980) Effects of water pollutants and other chemicals on fish acetylcholinesterase (in vitro). Environ Res 21(2):327–335PubMedCrossRefGoogle Scholar
  50. 50.
    Terwel D, Loschmann YN, Schmidt HH, Scholer HR, Cantz T, Heneka MT (2011) Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson’s disease. J Neurochem 118(1):105–112. doi: 10.1111/j.1471-4159.2011.07278.x PubMedCrossRefGoogle Scholar
  51. 51.
    Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274(52):37111–37116PubMedCrossRefGoogle Scholar
  52. 52.
    Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, Chen X, Chao X, Li W, Liu M, Liu P (2012) The effects of chronic copper exposure on the amyloid protein metabolism associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett 518(1):14–18. doi: 10.1016/j.neulet.2012.04.030 PubMedCrossRefGoogle Scholar
  53. 53.
    Saito T, Itoh T, Fujimura M, Saito K (1995) Age-dependent and region-specific differences in the distribution of trace elements in 7 brain regions of Long-Evans Cinnamon (LEC) rats with hereditary abnormal copper metabolism. Brain Res 695(2):240–244PubMedCrossRefGoogle Scholar
  54. 54.
    Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, Vernieri F, Rossi L, Baldassini M, Rossini PM (2005) Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology 64(6):1040–1046. doi: 10.1212/01.wnl.0000154531.79362.23 PubMedCrossRefGoogle Scholar
  55. 55.
    Cuajungco MP, Lees GJ (1998) Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res 799(1):118–129PubMedCrossRefGoogle Scholar
  56. 56.
    Cuajungco MP, Faget KY (2003) Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Res Brain Res Rev 41(1):44–56PubMedCrossRefGoogle Scholar
  57. 57.
    Sone K, Maeda M, Wakabayashi K, Takeichi N, Mori M, Sugimura T, Nagao M (1996) Inhibition of hereditary hepatitis and liver tumor development in Long-Evans cinnamon rats by the copper-chelating agent trientine dihydrochloride. Hepatology 23(4):764–770. doi: 10.1053/jhep.1996.v23.pm0008666330 PubMedCrossRefGoogle Scholar
  58. 58.
    Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447(5):796–800. doi: 10.1007/s00424-003-1074-3 PubMedCrossRefGoogle Scholar
  59. 59.
    Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172. doi: 10.1146/annurev.nutr.24.012003.132402 PubMedCrossRefGoogle Scholar
  60. 60.
    Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447(5):744–751. doi: 10.1007/s00424-003-1070-7 PubMedCrossRefGoogle Scholar
  61. 61.
    Haywood S (1980) The effect of excess dietary copper on the liver and kidney of the male rat. J Comp Pathol 90(2):217–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amit Pal
    • 1
  • Rama Kumari Badyal
    • 2
  • Rakesh Kumar Vasishta
    • 2
  • Savita Verma Attri
    • 3
  • Babu Ram Thapa
    • 4
  • Rajendra Prasad
    • 1
  1. 1.Department of BiochemistryPGIMERChandigarhIndia
  2. 2.Department of HistopathologyPGIMERChandigarhIndia
  3. 3.APC DepartmentPGIMERChandigarhIndia
  4. 4.Department of GastroenterologyPGIMERChandigarhIndia

Personalised recommendations