Advertisement

Biological Trace Element Research

, Volume 153, Issue 1–3, pp 41–49 | Cite as

Cross-Sectional Relationship Between Chronic Stress and Mineral Concentrations in Hair of Elementary School Girls

  • Barbara Vanaelst
  • Nathalie Michels
  • Inge Huybrechts
  • Els Clays
  • Maria R. Flórez
  • Lieve Balcaen
  • Martin Resano
  • Maite Aramendia
  • Frank Vanhaecke
  • Noellie Rivet
  • Jean-Sebastien Raul
  • Anne Lanfer
  • Stefaan De Henauw
Article

Abstract

Chronic stress exposure is associated with diverse negative health outcomes. It has been hypothesised that stress may also negatively affect the body's mineral status. This study investigates the association between chronic stress and long-term mineral concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P) and zinc (Zn) in scalp hair among elementary school girls. Complete information on child-reported stress estimates (Coddington Life Events Scale (CLES)), hair cortisone and hair mineral concentrations, and predefined confounders in the stress–mineral relationship (i.e. age, body mass index, physical activity, diet, hair colour and parental education) was provided cross-sectionally for 140 girls (5–10 years old). The relationship between childhood stress measures (predictor) and hair minerals (outcome) was studied using linear regression analysis, adjusted for the abovementioned confounders. Hair cortisone concentrations were inversely associated with hair mineral concentrations of Ca, Mg, Zn and the Ca/P ratio. Children at risk by life events (CLES) presented an elevated Ca/Mg ratio. These findings were persistent after adjustment for confounders. This study demonstrated an independent association between chronic stress measures and hair mineral levels in young girls, indicating the importance of physiological stress–mineral pathways independently from individual or behavioural factors. Findings need to be confirmed in a more heterogeneous population and on longitudinal basis. The precise mechanisms by which stress alters hair mineral levels should be further elucidated.

Keywords

Hair Cortisone Life events Stress Mineral Child 

Notes

Acknowledgments

The project was financed by the European Community within the Sixth RTD Framework Program contract no. 016181 (FOOD) and the research council of Ghent University (Bijzonder Onderzoeksfonds). Barbara Vanaelst, Lieve Balcaen and Maite Aramendia are financially supported by the Research Foundation—Flanders (grant nos. 1.1.894.11.N.00, 1.2.031.09.N.01 and 1.2.031.09.N.01, respectively). Nathalie Michels is financially supported by the research council of Ghent University (Bijzonder onderzoeksfonds). María R. Flórez is financially supported by Gent University (project BOF 01SB0309) and the Spanish Ministry of Economy and Competitiveness (project CTQ2009-08606). The authors wish to thank the ChiBS children and their parents who generously volunteered and participated in this project.

References

  1. 1.
    Cohen S, Kessler RC, Gordon LU (1997) Measuring stress: a guide for health and social scientists. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Schneiderman N, Ironson G, Siegel SD (2005) Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol 1:607–628PubMedCrossRefGoogle Scholar
  3. 3.
    Mcewen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179PubMedCrossRefGoogle Scholar
  4. 4.
    Pizent A, Jurasovic J, Pavlovic M, Telisman S (1999) Serum copper, zinc and selenium levels with regard to psychological stress in men. J Trace Elem Med Biol 13:34–39PubMedCrossRefGoogle Scholar
  5. 5.
    Singh A, Smoak BL, Patterson KY, Lemay LG, Veillon C, Deuster PA (1991) Biochemical indexes of selected trace minerals in men—effect of stress. Am J Clin Nutr 53:126–131PubMedGoogle Scholar
  6. 6.
    Takase B, Akima T, Uehata A, Ohsuzu F, Kurita A (2004) Effect of chronic stress and sleep deprivation on both flow-mediated dilation in the brachial artery and the intracellular magnesium level in humans. Clin Cardiol 27:223–227PubMedCrossRefGoogle Scholar
  7. 7.
    Cernak I, Savic V, Kotur J, Prokic V, Kuljic B, Grbovic D et al (2000) Alterations in magnesium and oxidative status during chronic emotional stress. Magnes Res 13:29–36PubMedGoogle Scholar
  8. 8.
    Seelig MS (1994) Consequences of magnesium deficiency on the enhancement of stress reactions—preventive and therapeutic implications (a review). J Am Coll Nutr 13:429–446PubMedGoogle Scholar
  9. 9.
    Grases G, Perez-Castello JA, Sanchis P, Casero A, Perello J, Isern B et al (2006) Anxiety and stress among science students. Study of calcium and magnesium alterations. Magnes Res 19:102–106PubMedGoogle Scholar
  10. 10.
    Moore RJ, Friedl KE, Tulley RT, Askew EW (1993) Maintenance of iron status in healthy men during an extended period of stress and physical activity. Am J Clin Nutr 58:923–927PubMedGoogle Scholar
  11. 11.
    Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 19:275–280PubMedCrossRefGoogle Scholar
  12. 12.
    Torres SJ, Nowson CA (2007) Relationship between stress, eating behavior, and obesity. Nutrition 23:887–894PubMedCrossRefGoogle Scholar
  13. 13.
    Rabinovitz S (2006) Stress and food craving. In: Yehuda S, Mostofsky DI (eds) Nutrients, stress and medical disorders. Human, New Jersey, pp 155–164CrossRefGoogle Scholar
  14. 14.
    Kaidar-Person O, Person B, Szomstein S, Rosenthal RJ (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Obes Surg 18:1028–1034PubMedCrossRefGoogle Scholar
  15. 15.
    Costantini D, Marasco V, Moller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456PubMedGoogle Scholar
  16. 16.
    Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10:1677–1694PubMedCrossRefGoogle Scholar
  17. 17.
    Kiecolt-Glaser JK (2010) Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom Med 72:365–369PubMedCrossRefGoogle Scholar
  18. 18.
    Yin J, Levanon D, Chen JDZ (2004) Inhibitory effects of stress on postprandial gastric myoelectrical activity and vagal tone in healthy subjects. Neurogastroenterol Motil 16:737–744PubMedCrossRefGoogle Scholar
  19. 19.
    Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47:861–869PubMedCrossRefGoogle Scholar
  20. 20.
    Heshmati HM, Riggs BL, Burritt MF, McAlister CA, Wollan P, Khosla S (1998) Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J Clin Endocrin Metab 83:751–756CrossRefGoogle Scholar
  21. 21.
    Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 27:33–44PubMedCrossRefGoogle Scholar
  22. 22.
    Michels N, Sioen I, Huybrechts I, Bammann K, Vanaelst B, De Vriendt T et al (2012) Negative life events, emotions and psychological difficulties as determinants of salivary cortisol in Belgian primary school children. Psychoneuroendocrinology 37:1506–1515PubMedCrossRefGoogle Scholar
  23. 23.
    Vanaelst B, De Vriendt T, Ahrens W, Bammann K, Hadjigeorgiou C, Konstabel K et al (2012) Prevalence of psychosomatic and emotional symptoms in European school-aged children and its relationship with childhood adversities: results from the IDEFICS study. Eur Child Adolesc Psychiatry 21:253–265PubMedCrossRefGoogle Scholar
  24. 24.
    Washington TD (2009) Psychological stress and anxiety in middle to late childhood and early adolescence: manifestations and management. J Pediatr Nurs 24:302–313PubMedCrossRefGoogle Scholar
  25. 25.
    Kempson IM, Lombi E (2011) Hair analysis as a biomonitor for toxicology, disease and health status. Chem Soc Rev 40:3915–3940PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer JS, Novak MA (2012) Minireview: hair cortisol: a novel biomarker of hypothalamic–pituitary–adrenocortical activity. Endocrinology 153:4120–4127PubMedCrossRefGoogle Scholar
  27. 27.
    Vanaelst B, Huybrechts I, Michels N, Vyncke K, Sioen I, De Vriendt T et al (2012) Mineral concentrations in hair of Belgian elementary school girls: reference values and relationship with food consumption frequencies. Biol Trace Elem Res 150:56–67PubMedCrossRefGoogle Scholar
  28. 28.
    Chojnacka K, Zielinska A, Michalak I, Gorecki H (2010) The effect of dietary habits on mineral composition of human scalp hair. Environ Toxicol Pharmacol 30:188–194PubMedCrossRefGoogle Scholar
  29. 29.
    Chojnacka K, Gorecka H, Gorecki H (2006) The effect of age, sex, smoking habit and hair color on the composition of hair. Environ Toxicol Pharmacol 22:52–57PubMedCrossRefGoogle Scholar
  30. 30.
    Wang CT, Chang WT, Jeng LH, Liu PE, Liu LY (2005) Concentrations of calcium, copper, iron, magnesium, and zinc in young female hair with different body mass indexes in Taiwan. J Heal Sci 51:70–74CrossRefGoogle Scholar
  31. 31.
    Nielsen FH, Lukaski HC (2006) Update on the relationship between magnesium and exercise. Magnes Res 19:180–189PubMedGoogle Scholar
  32. 32.
    Huybrechts I, Lin Y, De Keyzer W, Sioen I, Mouratidou T, Moreno LA et al (2011) Dietary sources and sociodemographic and economic factors affecting vitamin D and calcium intakes in Flemish preschoolers. Eur J Clin Nutr 65:1039–1047PubMedCrossRefGoogle Scholar
  33. 33.
    Montain SJ, Cheuvront SN, Lukaski HC (2007) Sweat mineral-element responses during 7 h of exercise–heat stress. Int J of Sport Nutr Exerc Metab 17:574–582Google Scholar
  34. 34.
    Ahrens W, Bammann K, Siani A, Buchecker K, De Henauw S, Iacoviello L et al (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes 35:S3–S15CrossRefGoogle Scholar
  35. 35.
    Michels N, Vanaelst B, Vyncke K, Sioen I, Huybrechts I, De Vriendt T et al (2012) Children's body composition and stress—the ChiBS study: aims, design, methods and population characteristics. Arch Publ Health 70:17CrossRefGoogle Scholar
  36. 36.
    Harkey MR (1993) Anatomy and physiology of hair. Forensic Sci Int 63:9–18PubMedCrossRefGoogle Scholar
  37. 37.
    Wang CT, Chang WT, Zeng WF, Lin CH (2005) Concentrations of calcium, copper, iron, magnesium, potassium, sodium and zinc in adult female hair with different body mass indexes in Taiwan. Clin Chem Lab Med 43:389–393PubMedGoogle Scholar
  38. 38.
    Bialkowska M, Hoser A, Szostak WB, Dybczynski R, Sterlinski S, Nowicka G et al (1987) Hair zinc and copper concentration in survivors of myocardial infarction. Ann Nutr Metab 31:327–332PubMedCrossRefGoogle Scholar
  39. 39.
    Park SB, Choi SW, Nam AY (2009) Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res 130:218–228PubMedCrossRefGoogle Scholar
  40. 40.
    Coddington RD (1972) Significance of life events as etiologic factors in diseases of children. 2. Study of normal population. J Psychosom Res 16:205–213PubMedCrossRefGoogle Scholar
  41. 41.
    Villalonga-Olives E, Valderas JM, Palacio-Vieira JA, Herdman M, Rajmil L, Alonso J (2008) The adaptation into Spanish of the Coddington Life Events Scales (CLES). Qual Life Res 17:447–452PubMedCrossRefGoogle Scholar
  42. 42.
    Welberg LAM, Thrivikraman KV, Plotsky PM (2005) Chronic maternal stress inhibits the capacity to up-regulate placental 11 beta-hydroxysteroid dehydrogenase type 2 activity. J Endocrinol 186:R7–R12PubMedCrossRefGoogle Scholar
  43. 43.
    Altuna ME, Lelli SM, de Viale LCSM, Damasco MC (2006) Effect of stress on hepatic 11 beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism. Can J Physiol Pharmacol 84:977–984PubMedCrossRefGoogle Scholar
  44. 44.
    Romer B, Lewicka S, Kopf D, Lederbogen F, Hamann B, Gilles M et al (2009) Cortisol metabolism in depressed patients and healthy controls. Neuroendocrinology 90:301–306PubMedCrossRefGoogle Scholar
  45. 45.
    Plenis A, Konieczna L, Oledzka I, Kowalski P, Baczek T (2011) Simultaneous determination of urinary cortisol, cortisone and corticosterone in parachutists, depressed patients and healthy controls in view of biomedical and pharmacokinetic studies. Mol Biosyst 7:1487–1500PubMedCrossRefGoogle Scholar
  46. 46.
    Yehuda R, Bierer LM, Andrew R, Schmeidler J, Seckl JR (2009) Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging holocaust survivors. J Psychiatr Res 43:877–883PubMedCrossRefGoogle Scholar
  47. 47.
    Vanaelst B, De Vriendt T, Huybrechts I, Michels N, Vyncke K, Sioen I et al (2013) Cortisone in hair of elementary-school girls and its relationship with childhood stress. Eur J Pediatr. doi: 10.1007/s00431-013-1955-1, Revisions under reviewPubMedGoogle Scholar
  48. 48.
    Vanaelst B, Rivet N, Ludes B, De Henauw S, Raul JS (2013) Measurement of cortisol and cortisone in children's hair using ultra performance liquid chromatography and tandem mass spectrometry. Anal Methods. doi: 10.1039/C3AY26570F, Revisions under reviewGoogle Scholar
  49. 49.
    UNESCO (1997) International Standard Classification of Education ISCED. http://www.unesco.org/education/information/nfsunesco/doc/isced_1997.htm. Accessed 1 Oct 2010
  50. 50.
    Burdette HL, Whitaker RC, Daniels SR (2004) Parental report of outdoor playtime as a measure of physical activity in preschool-aged children. Arch of Pediatrics Adolescent Med 158:353–357CrossRefGoogle Scholar
  51. 51.
    Lanfer A, Hebestreit A, Ahrens W, Krogh V, Sieri S, Lissner L et al (2011) Reproducibility of food consumption frequencies derived from the Children's Eating Habits Questionnaire used in the IDEFICS study. Int J Obes 35:S61–S68CrossRefGoogle Scholar
  52. 52.
    Huybrechts I, Bornhorst C, Pala V, Moreno LA, Barba G, Lissner L et al (2011) Evaluation of the Children's Eating Habits Questionnaire used in the IDEFICS study by relating urinary calcium and potassium to milk consumption frequencies among European children. Int J Obes 35:S69–S78CrossRefGoogle Scholar
  53. 53.
    Feskanich D, Rockett HRH, Colditz GA (2004) Modifying the Healthy Eating Index to assess diet quality in children and adolescents. J Am Diet Assoc 104:1375–1383PubMedCrossRefGoogle Scholar
  54. 54.
    Bammann K, Sioen I, Huybrechts I, Casajus JA, Vicente-Rodriguez G, Cuthill R et al (2011) The IDEFICS validation study on field methods for assessing physical activity and body composition in children: design and data collection. Int J Obes 35:S79–S87CrossRefGoogle Scholar
  55. 55.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Res Methods 39:175–191CrossRefGoogle Scholar
  56. 56.
    Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Res Methods 41:1149–1160CrossRefGoogle Scholar
  57. 57.
    Vanaelst B, De Vriendt T, Huybrechts I, Rinaldi S, De Henauw S (2012) Epidemiological approaches to measure childhood stress. Paediatr Perinat Epidemiol 26:280–297PubMedCrossRefGoogle Scholar
  58. 58.
    Chen JB, Shen H, Chen CJ, Wang WY, Yu SY, Zhao M et al (2009) The effect of psychological stress on iron absorption in rats. BMC Gastroenterol 9:83PubMedCrossRefGoogle Scholar
  59. 59.
    Roy A, Evers SE, Avison WR, Campbell MK (2010) Higher zinc intake buffers the impact of stress on depressive symptoms in pregnancy. Nutr Res 30:695–704PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Barbara Vanaelst
    • 1
    • 2
    • 10
  • Nathalie Michels
    • 1
  • Inge Huybrechts
    • 1
    • 3
  • Els Clays
    • 1
  • Maria R. Flórez
    • 4
    • 5
  • Lieve Balcaen
    • 2
    • 4
  • Martin Resano
    • 5
  • Maite Aramendia
    • 2
    • 6
  • Frank Vanhaecke
    • 4
  • Noellie Rivet
    • 7
  • Jean-Sebastien Raul
    • 7
  • Anne Lanfer
    • 8
  • Stefaan De Henauw
    • 1
    • 9
  1. 1.Department of Public HealthGhent UniversityGhentBelgium
  2. 2.Research Foundation—Flanders (FWO)BrusselsBelgium
  3. 3.Dietary Exposure Assessment GroupInternational Agency for Research on Cancer (IARC/WHO)Lyon CEDEX 08France
  4. 4.Department of Analytical ChemistryGhent UniversityGhentBelgium
  5. 5.Department of Analytical ChemistryUniversity of ZaragozaZaragozaSpain
  6. 6.Centro Universitario de la Defensa–Academia General Militar de ZaragozaZaragozaSpain
  7. 7.Department of Toxicology, Institute of Legal MedicineUniversity of StrasbourgStrasbourgFrance
  8. 8.BIPS Institute for Epidemiology and Prevention ResearchBremenGermany
  9. 9.Department of Health Sciences, VesaliusUniversity College GhentGhentBelgium
  10. 10.Department of Public Health, Ghent UniversityUniversity HospitalGhentBelgium

Personalised recommendations