Skip to main content

Advertisement

Log in

Trace Element, Antioxidant Activity, and Lipid Peroxidation Levels in Brain Cortex of Gerbils After Cerebral Ischemic Injury

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Proper trace element level and antioxidant enzyme activity are crucial for the brain in maintaining normal neurological functions. To our knowledge, alteration of lipid peroxidation status, trace element level, and antioxidant activity in the homogenates of brain cortex after cerebral ischemia in gerbil, however, has not been investigated so far. Male Mongolian gerbils were divided into control and ischemic subjects. Cerebral ischemia was induced by occlusion of the right middle cerebral artery and right common carotid artery for 1 h. Experimental results showed that a significant increase (P < 0.01) of the malondialdehyde level was found in the ischemic brain as compared with the control group. Trace element analysis indicated that a remarkable elevation (P < 0.01) of the level of iron (Fe), chromium (Cr), and a statistical decrease of selenium (Se) and zinc (Zn) (P < 0.05) concentration were observed in the ischemic brain as compared with the control subject. No significant change (P > 0.05) of the copper (Cu) level was found in both experimental groups. Additionally, antioxidant activity of superoxide dismutase (P < 0.01) and catalase (P < 0.05) was significantly decreased in the ischemic brain as compared with the control subject. Taking all results together, it is conceivable to manifest the experimental findings that cerebral ischemia not only may result in an enhanced oxidative stress but also may lead to further oxidative injury. Moreover, disturbance of trace element level combined with declined antioxidant activity seems to play a significant role in responsible for the etiology of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li C, Yan Z, Yan J, Chen H, LI H, Jiang Y, Zhang Z (2010) Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats. Neurochem Int 56:495–500

    Article  PubMed  CAS  Google Scholar 

  2. Shin JA, Lee H, Lim YK, Koh Y, Choi JH, Park EM (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227:93–100l

    Article  PubMed  CAS  Google Scholar 

  3. Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    Article  PubMed  CAS  Google Scholar 

  4. Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  PubMed  CAS  Google Scholar 

  5. Naziroglu M, Kutluhan S, Uğuz A, Celik O, Bal R, Butterworth PJ (2009) Topiramate and vitamin E modulate the electroencephalographic records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. J Memr Biol 229:131–140

    Article  CAS  Google Scholar 

  6. Pacheco-Limon J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 671:137–147

    Google Scholar 

  7. Sun AY, Wang Q, Simonyi A, Sun GY (2008) Botanical phenolics and brain health. Neuromol Med 10(4):259–274

    Article  CAS  Google Scholar 

  8. Qzcelik D, Uzun H, Naziroglu M (2012) N-acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat. Biol Trace Elem Res 147:292–298

    Article  Google Scholar 

  9. Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biol Med 23(5):793–792

    Article  Google Scholar 

  10. Texel SJ, Xu X, Harris ZL (2008) Ceruloplasmin in neurodegenerative diseases. Biochem Soc Trans 36:1277–1281

    Article  PubMed  CAS  Google Scholar 

  11. Naziroglu M (2012) Molecular role of catalase on oxidative stress-induced Ca (2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32:134–141

    Article  PubMed  CAS  Google Scholar 

  12. Dávalos A, Fernandez-Real JM, Ricart W, Soler S, Molins A, Planas E, Genís D (1994) Iron-related damage in acute ischemic stroke. Stroke 25(8):1543–1546

    Article  PubMed  Google Scholar 

  13. Barbouti A, Doulias PT, Zhu BZ, Frei B, Galaris D (2001) Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Free Radical Biol Med 31(4):490–498

    Article  CAS  Google Scholar 

  14. Schweizer U, Brauer U, Kohrle NR, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  PubMed  CAS  Google Scholar 

  15. Medjati ND, Harek Y, Tarik A, Lahcene L (2012) Whole blood selenium levels in healthy adults from the west of Algeria. Biol Trace Elem Res 147:44–48

    Article  Google Scholar 

  16. Jain SK, Croad LJ, Velusamy T, Rains LJ, Bull R (2010) Chromium dinicocysteinate supplementation can lower blood glucose, CRP, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and glut-2 in livers of Zucker diabetic fatty rats. Mol Nutr Food Res 54(9):1371–1380

    Article  PubMed  CAS  Google Scholar 

  17. Shi X, Dalal NS, Kasprzak KS (1993) Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of chromium (III). Arch Biochem Biophys 302:294–299

    Article  PubMed  CAS  Google Scholar 

  18. Sugden KD, Geer RD, Rogers SJ (1992) Oxygen radical mediated DNA damage by redox-active chromium (III) complexes. Biochem 31:11626–11631

    Article  CAS  Google Scholar 

  19. Atsushi T (2001) Zinc homeostasis and functions of zinc in the brain. Bio Metals 14:343–351

    Google Scholar 

  20. Su R, Mei X, Wang Y, Zhang L (2012) Regulation of zinc transporter 1 expression in dorsal horn of spinal cord after acute spinal cord injury of rats by dietary zinc. Biol Trace Elem Res 149(2):219–226

    Article  PubMed  CAS  Google Scholar 

  21. Fayed AHA (2010) Brain trace element concentration of rats treated with the plant alkaloid, vincamine. Biol Trace Elem Res 136(3):314–319

    Article  PubMed  CAS  Google Scholar 

  22. Crockard AF, Iannotti AT, Hunstock RD, Smith RD, Harris RL, Symon L (1980) Cerebral blood flow and oedema following carotid occlusion in the gerbil. Stroke 11:494–498

    Article  PubMed  CAS  Google Scholar 

  23. Kahn K (1972) The natural course of experimental cerebral infarction in the gerbil. Neurol 22:510–515

    Article  CAS  Google Scholar 

  24. Uyama O, Matsuyama T, Michishita H, Nakamura H, Sugita M (1992) Protective effects of human recombinant superoxide dismutase on transient ischemic injury of CA1 neurons in gerbils. Stroke 23:75–81

    Article  PubMed  CAS  Google Scholar 

  25. Wang D, Yuan X, Liu T, Liu L, Hu Y, Wang Z, Zheng Q (2012) Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice. Molecules 17:9803–9817

    Article  PubMed  CAS  Google Scholar 

  26. Sunderman FW, Marzouk A, Hopfer SM, Zaharia O, Reid MC (1985) Increased lipid peroxidation in tissue of nickel chloride treated rats. Ann Clin Lab Sci 15:229–236

    PubMed  CAS  Google Scholar 

  27. Yousuf S, Atif F, Ahmad M, Hoda N, Ishart T (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253

    Article  PubMed  CAS  Google Scholar 

  28. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

    PubMed  CAS  Google Scholar 

  29. Marnett L (1999) Lipid peroxidation─DNA damage by malondialdehyde. Mutat Res 424:83–95

    Article  PubMed  CAS  Google Scholar 

  30. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    Article  PubMed  CAS  Google Scholar 

  31. Houglum K, Filip M, Witztum JL, Chojkier M (1990) Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J Clin Invest 86:1991–1998

    Article  PubMed  CAS  Google Scholar 

  32. Trush MA, Kensler TW (1991) An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic Biol Med 10:201–209

    Article  PubMed  CAS  Google Scholar 

  33. Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4:2587–2597

    PubMed  CAS  Google Scholar 

  34. Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337

    Article  PubMed  CAS  Google Scholar 

  35. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26:268–298

    Article  CAS  Google Scholar 

  36. Becaria A, Lahiri DK, Bondy SC, Chen D, Hamadeh A, Li H, Taylor R, Campbell A (2006) Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain. J Neuroimmunol 176:16–23

    Article  PubMed  CAS  Google Scholar 

  37. Focht SJ, Snyder BS, Beard JLGelder V, Williams LR, Connor JR (1997) Regional distribution of iron, transferrin, ferritin, and oxidatively-modified proteins in young and aged Fischer 344 rat brains. Neurosci 79(1):255–261

    Article  CAS  Google Scholar 

  38. Van Lenten BJ, Prieve J, Vavab M, Hama S, Lusis AJ, Fogelman AM (1995) Lipid-induced changes in intracellular iron homeostasis in vitro and in vivo. J Clin Invest 95:2104–2110

    Article  PubMed  Google Scholar 

  39. Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17:437–442

    Article  PubMed  Google Scholar 

  40. Turlo J, Gutkowska B, Malinowska E (2007) Relationship between the selenium, selenomethionine, and selenocysteine content of submerged cultivated mycelium of lentinula edodes. Acta Chromatogr 18:36–48

    CAS  Google Scholar 

  41. Whanger PD (2004) Selenium and its relationship to cancer: an update. Brit J Nutr 91:11–28

    Article  PubMed  CAS  Google Scholar 

  42. Speich M, Pineau A, Ballereau F (2001) Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta 312:1–11

    Article  PubMed  CAS  Google Scholar 

  43. Ozawa T, Hanaki A (1990) Spin-trapping studies on the reactions of chromium (III) with hydrogen peroxide in the presence of biological reductants: is chromium (III) nontoxic? Biochem Int 22:343–352

    PubMed  CAS  Google Scholar 

  44. Bagchi D, Hassoun EA, Bagchi M, Stohs SJ (1995) Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in Sprague–Dawley rats. Comp Biochem Physiol 110(2):177–187

    CAS  Google Scholar 

  45. Aviva L, Peter AL (2008) Chemical properties and toxicity of chromium (III) nutritional supplements. Chem Res Toxicol 21(3):563–571

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Council of Taiwan (NSC 99-2314-B-166-001-MY3) and Central Taiwan University of Science and Technology (CTU99-PC-012) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Cheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, KM., Cheng, FC., Huang, YL. et al. Trace Element, Antioxidant Activity, and Lipid Peroxidation Levels in Brain Cortex of Gerbils After Cerebral Ischemic Injury. Biol Trace Elem Res 152, 66–74 (2013). https://doi.org/10.1007/s12011-012-9596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9596-1

Keywords

Navigation