Biological Trace Element Research

, Volume 151, Issue 3, pp 330–334 | Cite as

A Pilot Study on Neopterin Levels and Tryptophan Degradation in Zinc-Exposed Galvanization Workers

  • Elif Seyda Sarac
  • Gözde Girgin
  • S.Sezin Palabiyik
  • Mohammad Charehsaz
  • Ahmet Aydin
  • Gönül Sahin
  • Terken BaydarEmail author


Hot-dip galvanization is a zinc-coating process to protect the metal items from corrosion. Zinc oxide nanoaerosol fume rising from hot metal bath surface in nano dimensions contains the greatest risk for workers in galvanization process. In the present study, it was evaluated whether inhalation of zinc causes any alteration in cellular immunity and tryptophan degradation by measuring neopterin, tryptophan, kynurenine, and zinc levels in 63 male galvanization workers and 23 male office personnel as controls. Serum and urinary zinc levels were found as 14.90 ± 0.90 and 102 ± 4.7 μg/dL in workers while 12.87 ± 1.45 and 75 ± 4.2 μg/dL in controls, respectively (both, p < 0.05). Similarly, the mean urinary neopterin levels and serum neopterin and kynurenine levels were found to be statistically higher in galvanization workers than the controls (all, p < 0.05). Significant correlations were found between urinary neopterin levels and kynurenine to tryptophan ratio or serum zinc levels. The results indicated cellular immune activation by occupational zinc exposure. It was estimated that neopterin, in parallel with kynurenine pathway, could reflect occupational exposure to zinc nanoaerosols and might be useful in early diagnosis of immune alterations due to nano-scale exposures.


Neopterin Zinc Tryptophan Kynurenine Hot-dip galvanization 



The authors would like to thank the galvanization firm and factory physician H.G. for their support.

Conflict of Interest

The authors report no external funding and no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    El Safty A, El Mahgoub K, Helal S, Abdel Maksoud N (2008) Zinc toxicity among galvanization workers in the iron and steel industry. Ann N Y Acad Sci 1140:256–262PubMedCrossRefGoogle Scholar
  2. 2.
    Prasad AS (1993) Essentiality and toxicity of zinc. Scand J Work Environ Health 19(Suppl 1):134–136PubMedGoogle Scholar
  3. 3.
    Cooper RG (2008) Zinc toxicology following particulate inhalation. Indian J Occup Environ Med 12(1):10–13PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Leonard SS, Chen BT, Stone SG, Schwegler-Berry D, Kenyon AJ, Frazer D, Antonini JM (2010) Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part Fibre Toxicol 7:32PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Luo JC, Hsu KH, Shen WS (2009) Inflammatory responses and oxidative stress from metal fume exposure in automobile welders. J Occup Environ Med 51(1):95–103PubMedCrossRefGoogle Scholar
  6. 6.
    Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43(20):7939–7945PubMedCrossRefGoogle Scholar
  7. 7.
    Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125(2):462–472PubMedCrossRefGoogle Scholar
  8. 8.
    Kunimasa K, Arita M, Tachibana H, Tsubouchi K, Konishi S, Korogi Y, Nishiyama A, Ishida T (2011) Chemical pneumonitis and acute lung injury caused by inhalation of nickel fumes. Intern Med 50(18):2035–2038PubMedCrossRefGoogle Scholar
  9. 9.
    OSHA (2006) Chemical sampling information: zinc oxide fume. Accessed March 27th, 2012
  10. 10.
    Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM (2011) Nanotoxicology—a pathologist’s perspective. Toxicol Pathol 39(2):301–324PubMedCrossRefGoogle Scholar
  11. 11.
    Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS (1997) Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J Occup Environ Med 39(8):722–726PubMedCrossRefGoogle Scholar
  12. 12.
    Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care (San Antonio) 19(3):215–240CrossRefGoogle Scholar
  13. 13.
    Porea TJ, Belmont JW, Mahoney DH Jr (2000) Zinc-induced anemia and neutropenia in an adolescent. J Pediatr 136(5):688–690PubMedCrossRefGoogle Scholar
  14. 14.
    Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Falus A, Beres J (1996) A trace element preparation containing zinc increases the production of interleukin-6 in human monocytes and glial cells. Biol Trace Elem Res 51(3):293–301PubMedCrossRefGoogle Scholar
  16. 16.
    Blanc PD, Boushey HA, Wong H, Wintermeyer SF, Bernstein MS (1993) Cytokines in metal fume fever. Am Rev Respir Dis 147(1):134–138PubMedCrossRefGoogle Scholar
  17. 17.
    Fuchs D, Weiss G, Reibnegger G, Wachter H (1992) The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit Rev Clin Lab Sci 29(3–4):307–341PubMedCrossRefGoogle Scholar
  18. 18.
    Wirleitner B, Reider D, Ebner S, Bock G, Widner B, Jaeger M, Schennach H, Romani N, Fuchs D (2002) Monocyte-derived dendritic cells release neopterin. J Leukoc Biol 72(6):1148–1153PubMedGoogle Scholar
  19. 19.
    Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 160(1):310–316PubMedCrossRefGoogle Scholar
  20. 20.
    Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Biol Chem Hoppe Seyler 370(9):1063–1069PubMedCrossRefGoogle Scholar
  21. 21.
    Widner B, Wirleitner B, Baier-Bitterlich G, Weiss G, Fuchs D (2000) Cellular immune activation, neopterin production, tryptophan degradation and the development of immunodeficiency. Arch Immunol Ther Exp (Warsz) 48(4):251–258Google Scholar
  22. 22.
    Yao YM, Yu Y, Wang YP, Tian HM, Sheng ZY (1996) Elevated serum neopterin level: its relation to endotoxaemia and sepsis in patients with major burns. Eur J Clin Invest 26(3):224–230PubMedCrossRefGoogle Scholar
  23. 23.
    Strohmaier W, Redl H, Schlag G, Inthorn D (1987) d-erythro-neopterin plasma levels in intensive care patients with and without septic complications. Crit Care Med 15(8):757–760PubMedCrossRefGoogle Scholar
  24. 24.
    Ruokonen E, Ilkka L, Niskanen M, Takala J (2002) Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol Scand 46(4):398–404PubMedCrossRefGoogle Scholar
  25. 25.
    Yuksel O, Sahin TT, Girgin G, Sipahi H, Dikmen K, Samur O, Barak A, Tekin E, Baydar T (2007) Neopterin, catalase and superoxide dismutase in females with benign and malignant breast tumors. Pteridines 18:132–138CrossRefGoogle Scholar
  26. 26.
    Hensler T, Sauerland S, Lefering R, Nagelschmidt M, Bouillon B, Andermahr J, Neugebauer EAM (2003) The clinical value of procalcitonin and neopterin in predicting sepsis and organ failure after major trauma. Shock 20(5):420–426PubMedCrossRefGoogle Scholar
  27. 27.
    Baydar T, Yuksel O, Sahin TT, Dikmen K, Girgin G, Sipahi H, Kurukahvecioglu O, Bostanci H, Sare M (2009) Neopterin as a prognostic biomarker in intensive care unit patients. J Crit Care 24(3):318–321PubMedCrossRefGoogle Scholar
  28. 28.
    Ploder M, Spittler A, Schroecksnadel K, Neurauter G, Pelinka LE, Roth E, Fuchs D (2009) Accelerated tryptophan degradation in trauma and sepsis patients is related to pro-inflammatory response and to the diminished in vitro response of monocytes. Pteridines 20(2):54–61Google Scholar
  29. 29.
    Berdowska A, Zwirska-Korczala K (2001) Neopterin measurement in clinical diagnosis. J Clin Pharm Ther 26(5):319–329PubMedCrossRefGoogle Scholar
  30. 30.
    Murr C, Widner B, Wirleitner B, Fuchs D (2002) Neopterin as a marker for immune system activation. Curr Drug Metab 3(2):175–187PubMedCrossRefGoogle Scholar
  31. 31.
    Maier LA, Kittle LA, Mroz MM, Newman LS (2003) Beryllium-stimulated neopterin as a diagnostic adjunct in chronic beryllium disease. Am J Ind Med 43(6):592–601PubMedCrossRefGoogle Scholar
  32. 32.
    Baydar M, Capan Z, Girgin G, Baydar T, Sahin G (2011) Evaluation of changes in immune system of operating room personnel by measurement of urinary neopterin concentrations. Pteridines 22:13–17CrossRefGoogle Scholar
  33. 33.
    Altindag ZZ, Baydar T, Isimer A, Sahin G (2003) Neopterin as a new biomarker for the evaluation of occupational exposure to silica. Int Arch Occup Environ Health 76(4):318–322PubMedGoogle Scholar
  34. 34.
    Pingle SK, Tumane RG, Jawade AA (2008) Neopterin: biomarker of cell-mediated immunity and potent usage as biomarker in silicosis and other occupational diseases. Indian J Occup Environ Med 12:107–111PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2:1–19PubMedCentralPubMedGoogle Scholar
  36. 36.
    Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522PubMedGoogle Scholar
  37. 37.
    Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364(1–2):82–90PubMedCrossRefGoogle Scholar
  38. 38.
    King NJ, Thomas SR (2007) Molecules in focus: ındoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 39(12):2167–2172PubMedCrossRefGoogle Scholar
  39. 39.
    Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117(5):1147–1154PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Girgin G, Sahin TT, Fuchs D, Yuksel O, Kurukahvecioglu O, Sare M, Baydar T (2011) Tryptophan degradation and serum neopterin concentrations in intensive care unit patients. Toxicol Mech Methods 21(3):231–235PubMedCrossRefGoogle Scholar
  41. 41.
    Laich A, Neurauter G, Widner B, Fuchs D (2002) More rapid method for simultaneous measurement of tryptophan and kynurenine by HPLC. Clin Chem 48(3):579–581PubMedGoogle Scholar
  42. 42.
    Maret W, Krezel A (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13(7–8):371–375PubMedCentralPubMedGoogle Scholar
  43. 43.
    McPherson RA, Pincus MR (eds) (2011) Henry’s clinical diagnosis and management by laboratory methods, 22nd edn. Elsevier Saunders, Philadelphia, USAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elif Seyda Sarac
    • 1
  • Gözde Girgin
    • 2
  • S.Sezin Palabiyik
    • 2
  • Mohammad Charehsaz
    • 3
  • Ahmet Aydin
    • 3
  • Gönül Sahin
    • 2
    • 4
  • Terken Baydar
    • 2
    • 5
    Email author
  1. 1.Nanotechnology and Nanomedicine DivisionInstitute of Science, University of HacettepeAnkaraTurkey
  2. 2.Department of Toxicology, Faculty of PharmacyUniversity of HacettepeAnkaraTurkey
  3. 3.Department of Toxicology, Faculty of PharmacyUniversity of YeditepeIstanbulTurkey
  4. 4.Department of Toxicology, Faculty of PharmacyUniversity of Eastern MediterraneanFamagustaTR North Cyprus
  5. 5.Nanotoxicology Group in Nanotechnology and Nanomedicine DivisionInstitute of Science, University of HacettepeAnkaraTurkey

Personalised recommendations