Biological Trace Element Research

, Volume 151, Issue 2, pp 234–239

Changes of the Serum Cytokine Contents in Broilers Fed on Diets Supplemented with Nickel Chloride

  • Bangyuan Wu
  • Hengmin Cui
  • Xi Peng
  • Jing Fang
  • Zhicai Zuo
  • Jianying Huang
  • Qin Luo
  • Yubing Deng
  • Hesong Wang
  • Juan Liu
Article

Abstract

Cytokines are immunoregulatory proteins which play an important role in the immune system. The purpose of this study was to examine the serum cytokine contents including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) induced by dietary nickel chloride in broilers by enzyme-linked immunospecific assay. A total of 240 one-day-old avian broilers were divided into four groups and fed on a corn–soybean basal diet as control diet or the same basal diet supplemented with 300, 600, and 900 mg/kg of nickel chloride. During the experimental period of 42 days, the results showed that the serum IL-2, IL-4, IL-6, IL-10, IFN-γ and TNF-α contents were lower (p < 0.05 or p < 0.01) in the 300, 600, 900 mg/kg groups than those in the control group. It was concluded that dietary nickel chloride in the range of 300 to 900 mg/kg could reduce the serum cytokine contents, which could finally impact the immune function in broilers.

Keywords

Nickel chloride IL-2 IL-4 IL-6 IL-10 IFN-γ TNF-α Serum Broiler 

References

  1. 1.
    Afridi HI, Kazi TG, Kazi N et al (2011) Evaluation of status of cadmium, lead, and nickel levels in biological samples of normal and night blindness children of age groups 3–7 and 8–12 years. Biol Trace Elem Res 142(3):350–361PubMedCrossRefGoogle Scholar
  2. 2.
    Anke M, Grun M, Ditrich C et al (1974) Low nickel rations for growth and reproduction in pigs. In: Hoekstra WC, Suttle JW, Canther HE, Mertz W (eds) Trace element metabolism in animals—2. University Park Press, Baltimore, pp 715–717Google Scholar
  3. 3.
    Nielsen FH, Myron DR, Givand SH et al (1975) Nickel deficiency in rats. J Nutr 105(12):1620–1630PubMedGoogle Scholar
  4. 4.
    Anke M, Partschefeld M, Grün M et al (1978) Nickel—an essential trace element: effect of nickel deficiency on reproductive performance in female animals. Arch Tierernahr 28(2):83–90PubMedCrossRefGoogle Scholar
  5. 5.
    Nielsen FH (1991) Nutrition requirement for boron, silicon vanadium, nickel and arsenic: current knowledge and speculations. FASEB J 5(12):2661–2667PubMedGoogle Scholar
  6. 6.
    Stangl GI, Kirchgessner M (1996) Nickel deficiency alters liver lipid metabolism in rats. J Nutr 126(10):2466–2473PubMedGoogle Scholar
  7. 7.
    Nielsen FH, Uthus EO, Poellot RA et al (1993) Dietary vitamin B12, sulfur amino acids, and oddchain fatty acids affect the responses of rats to nickel deprivation. Biol Trace Elem Res 37(1):1–15PubMedCrossRefGoogle Scholar
  8. 8.
    Uthus EO, Poellot RA (1997) Dietary nickel and folic acid interact to affect folate and methionine metabolism in the rat. Biol Trace Elem Res 58(1–2):25–33PubMedCrossRefGoogle Scholar
  9. 9.
    Spears JW, Hatfield EE, Forbes RM (1978) Interrelationship between nickel and zinc in the rat. J Nutr 108(1):307–312PubMedGoogle Scholar
  10. 10.
    Nielsen FH, Zimmerman TJ, Collings ME et al (1979) Nickel deprivation in rats: nickel–iron interactions. J Nutr 109(9):1623–1632PubMedGoogle Scholar
  11. 11.
    Yarat A, Nokay S, Ipbuker A et al (1992) Serum nickel levels of diabetic patients and healthy controls by AAS with a graphite furnace. Biol Trace Elem Res 35(3):273–280PubMedCrossRefGoogle Scholar
  12. 12.
    Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152(1):42–48PubMedGoogle Scholar
  13. 13.
    Diekert G, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122(1):117–120CrossRefGoogle Scholar
  14. 14.
    Drake HL (1982) Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaeeticum. J Bacteriol 149(2):561–566PubMedGoogle Scholar
  15. 15.
    Diekert G, Ritter M (1983) Purification of the nickel carbon monoxide dehydrogenase of Clostridium therrnoaeeticum. FEBS Lett 151(1):41–44PubMedCrossRefGoogle Scholar
  16. 16.
    Ragsdale SW, Clark JE, Ljungdahl LG et al (1983) Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron–sulfur protein. J Biol Chem 258(4):2364–2369PubMedGoogle Scholar
  17. 17.
    Dixon NE, Gazzola C, Blakeley RL et al (1975) Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel. J Am Chem Soc 97(14):4131–4133PubMedCrossRefGoogle Scholar
  18. 18.
    Nielsen FH (1990) New essential trace elements for the life sciences. Biol Trace Elem Res 26–27(1):599–611PubMedCrossRefGoogle Scholar
  19. 19.
    Barrie L A (1981) Atmospheric nickel in Canada. In: Effects of nickel in the Canadian environment, Ottawa, National Research Council of Canada, 55–76Google Scholar
  20. 20.
    WHO (1991) Nickel: environmental health criteria No: 108. World Health Organization, GenevaGoogle Scholar
  21. 21.
    Demir TA, Isıkl B, Ürer SM et al (2005) Nickel exposure and its effects. BioMetals 18(1):7–13PubMedCrossRefGoogle Scholar
  22. 22.
    Flyvholm MA, Nielsen GD, Andersen A (1984) Nickel content of food and estimation of dietary intake. Z Lebensm Unters Forsch 179(6):427–431PubMedCrossRefGoogle Scholar
  23. 23.
    Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15(3):375–382Google Scholar
  24. 24.
    Pandey R, Kumar R, Singh SP et al (1999) Male reproductive effects of nickel sulphate in mice. Biometals 12(4):339–346PubMedCrossRefGoogle Scholar
  25. 25.
    Yokoi K, Uthus EO, Nielsen FH (2003) Nickel deficiency diminishes sperm quantity and movement in rats. Biol Trace Elem Res 93(1–3):141–153PubMedCrossRefGoogle Scholar
  26. 26.
    NRC (1994) Nutrient requirements of domestic animals. Nutrient requirements of poultry, 9th edn. National Academy of Science, Washington, DCGoogle Scholar
  27. 27.
    Gaca MD, Pickering JA, Arthur MJ et al (1999) Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J Hepatol 30(5):850–858PubMedCrossRefGoogle Scholar
  28. 28.
    Wlliam T, Shearer MD, Lanny J et al (2004) Functional and molecular evaluation of lymphocytes. J Allergy Clin Immunol 114(2):227–234CrossRefGoogle Scholar
  29. 29.
    Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transplant Int 22(11):1041–1050CrossRefGoogle Scholar
  30. 30.
    Fleisher TA, Oliveira JB (2004) Functional and molecular evaluation of lymphocytes. J Allergy Clin Immunol 114(2):227–234PubMedCrossRefGoogle Scholar
  31. 31.
    Perdigon G, Alvarez S, Rachid M et al (1995) Immune system stimulation by probiotics. J Dairy Sci 78(7):1597–1606PubMedCrossRefGoogle Scholar
  32. 32.
    Boscolo P, Andreassi M, Sabbioni E et al (1999) Systemic effects of ingested nickel on the immune system of nickel sensitised women. Life Sci 64(17):1485–1491PubMedCrossRefGoogle Scholar
  33. 33.
    Salsano F, Francia C, Roumpedaki I et al (2004) Immune effects of nickel. Int J Immunopathol Pharmacol 17(2):63–69PubMedGoogle Scholar
  34. 34.
    Scott P (1993) IL-12: initiation cytokine for cell-mediated immunity. Science 260(5107):496–497PubMedCrossRefGoogle Scholar
  35. 35.
    Abreu-Martin MT, Targen SR (1996) Regulation of immune responses of the intestinal mucosa [J]. Crit Rev Immunol 16(3):277–309PubMedCrossRefGoogle Scholar
  36. 36.
    Bonham M, O’Connor JM, Hannigan BM et al (2002) The immune system as a physiological indicator of marginal copper status. Br J Nutr 87(5):383–403CrossRefGoogle Scholar
  37. 37.
    Sawai T, Goldstone N, Drongowski RA et al (2001) Effect of secretory immunoglobulin a on bacterial translocation in an enterocyte–lymphocyte co-culture model. Pediatr Surg Int 17(4):275–279PubMedCrossRefGoogle Scholar
  38. 38.
    Vassali P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10(1):411–452CrossRefGoogle Scholar
  39. 39.
    Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13(4–5):357–368PubMedCrossRefGoogle Scholar
  40. 40.
    Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226(1):205–218PubMedCrossRefGoogle Scholar
  41. 41.
    Boehm U, Klamp T, Groot M et al (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15(1):749–795PubMedCrossRefGoogle Scholar
  42. 42.
    Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7(1):145–173PubMedCrossRefGoogle Scholar
  43. 43.
    Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12(1):635–673PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshida A, Koide Y, Uchijima M et al (1994) IFN-γ induces IL-12 mRNA expression by a murine macrophage cell line, J774. Biochem Biophy Res Commun 198(3):857–861CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Bangyuan Wu
    • 1
  • Hengmin Cui
    • 1
    • 2
  • Xi Peng
    • 1
  • Jing Fang
    • 1
  • Zhicai Zuo
    • 1
  • Jianying Huang
    • 1
  • Qin Luo
    • 1
  • Yubing Deng
    • 1
  • Hesong Wang
    • 1
  • Juan Liu
    • 1
  1. 1.Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
  2. 2.College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina

Personalised recommendations