Biological Trace Element Research

, Volume 151, Issue 2, pp 307–314 | Cite as

The Probiotic Bacterial Strain Lactobacillus fermentum D3 Increases In Vitro the Bioavailability of Ca, P, and Zn in Fermented Goat Milk

  • Triana Bergillos-Meca
  • Miguel Navarro-Alarcón
  • Carmen Cabrera-Vique
  • Reyes Artacho
  • Manuel Olalla
  • Rafael Giménez
  • Miriam Moreno-Montoro
  • Alfonso Ruiz-Bravo
  • Agustín Lasserrot
  • Mª Dolores Ruiz-López
Article

Abstract

We determined calcium, magnesium, phosphorus and zinc levels in a total of 27 samples of commercial goat- and cow-milk fermented products and 9 samples of a goat-milk fermented product with addition of a probiotic bacterial strain, Lactobacillus fermentum D3, manufactured experimentally by our research group. Atomic absorption spectroscopy with flame atomization and UV/VIS spectrophotometry were used as analytic techniques. The results of an in vitro digestion process showed that the bioavailability of calcium, phosphorus, and zinc was significantly higher in our fermented milk containing the probiotic bacterial strain than it was in commercial goat-milk fermented products. Furthermore, our product showed a significantly higher bioavailability of calcium and zinc compared to goat- and cow-milk fermented products made with other microorganisms. We conclude that, in in vitro assays, strain D3 seems to increase the bioavailability of these minerals and that this new product may constitute a better source of bioavailable minerals compared to other products already on the market.

Keywords

Fermented goat Cow-milk products Mineral composition Dialyzable fraction Probiotic starter culture 

References

  1. 1.
    Olalla M, Ruiz-López MD, Navarro M, Artacho R, Cabrera C, Giménez R, Rodríguez C, Mingorance R (2009) Nitrogen fractions of Andalusian goat milk compared to similar types of commercial milk. Food Chem 113:835–838CrossRefGoogle Scholar
  2. 2.
    López-Aliaga I, Díaz-Castro J, Alférez MJM, Barrionuevo M, Campos MS (2010) A review of the nutritional and health aspects of goat milk in cases of intestinal resection. Dairy Sci Technol 90(6):611–622Google Scholar
  3. 3.
    Alférez MJM, Barrionuevo M, López-Aliaga I, Sampelayo MRS, Lisbona F, Robles JC, Campos MS (2001) Digestive utilization of goat and cow milk fat in malabsorption syndrome. J Dairy Res 68(3):451–461PubMedCrossRefGoogle Scholar
  4. 4.
    López-Aliaga I, Díaz J, Nestares T, Alférez MJM, Campos MS (2009) Calcium-supplemented goat milk does not interfere with iron absorption in rats with anaemia induced by dietary iron depletion. Food Chem 113(3):839–841CrossRefGoogle Scholar
  5. 5.
    Sanz-Sampelayo MR, Chilliard Y, Schmidely P, Boza J (2007) Influence of type of diet on the fat constituents of goat and sheep milk. Small Ruminant Res 68(1–2):42–63CrossRefGoogle Scholar
  6. 6.
    FAOSTAT 2010. http://www.faostat.fao.org. Accessed 30 November 2011
  7. 7.
    Cabañero AI, Madrid Y, Cámara C (2007) Mercury-selenium species ratio in representative fish samples and their bioavailability by an in vitro digestion method. Biol Trace Elem Res 119(3):195–211PubMedCrossRefGoogle Scholar
  8. 8.
    Perales S, Barberá R, Lagarda MJ, Farré R (2007) Availability of iron from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialysability) and uptake and transport by Caco-2 cells. Food Chem 102(4):1296–1303CrossRefGoogle Scholar
  9. 9.
    Cabrera-Vique C, Bouzas PR (2009) Chromium and manganese levels in convenience and fast foods: in vitro study of the dialyzable fraction. Food Chem 117(4):757–763CrossRefGoogle Scholar
  10. 10.
    Jovaní M, Barberá R, Farré R, Martín de Aguilera E (2001) Calcium, iron and zinc uptake from digests of infant formulas by Caco-2 cells. J Agric Food Chem 49:3480–3485PubMedCrossRefGoogle Scholar
  11. 11.
    Perales S, Barberá R, Lagarda MJ, Farré R (2006) Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc. J Agric Food Chem 54:4901–4906PubMedCrossRefGoogle Scholar
  12. 12.
    Velasco-Reynold C, Navarro-Alarcón M, López-García de la Serrana H, Pérez-Valero V, López-Martínez MC (2008) In vitro determination of zinc dialysability from duplicate hospital meals: influence of other nutrients. Nutrition 24:84–93PubMedCrossRefGoogle Scholar
  13. 13.
    Salva S, Nuñez M, Villena J, Ramón A, Font G, Alvarez S (2011) Development of a fermented goats’ milk containing Lactobacillus rhamnosus: in vivo study of health benefits. J Sci Food Agric 91(13):2355–62PubMedCrossRefGoogle Scholar
  14. 14.
    Chian SS, Pan TM (2012) Beneficial effects of Lactobacillus paracasei subsp paracasei NTU 101 and its fermented products. Appl Microbiol Biotechnol 93(3):903–916CrossRefGoogle Scholar
  15. 15.
    Velasco-Reynold C, Navarro-Alarcón M, López-García de la Serrana H, Pérez-Valero V, López-Martínez MC (2008) Determination of daily dietary intake of chromium by duplicate diet sampling: in vitro availability study. Food Addit Contam 25(5):604–610CrossRefGoogle Scholar
  16. 16.
    Bollinger DW, Tsunoda A, Ledoux DR, Ellersieck MR, Veum TL (2005) A comparison of the test tube and the dialysis tubing in vitro methods for estimating the bioavailability of phosphorus in feed ingredients for swine. J Agric Food Chem 53:3287–3294PubMedCrossRefGoogle Scholar
  17. 17.
    Perales S, Barberá R, Lagarda M, Farré R (2005) Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by Caco-2 cells). J Agric Food Chem 53:3721–3726PubMedCrossRefGoogle Scholar
  18. 18.
    Gautam S, Platel K, Srinivasan K (2010) Higher biaccessibility of iron and zinc from food grains in the presence of garlic and onion. J Agric Food Chem 58:8426–8429PubMedCrossRefGoogle Scholar
  19. 19.
    Moreno-Torres R, Navarro M, Ruiz-López MD, Artacho R, López C (2000) Comparison of wet and dry mineralisation procedures for determining calcium and phosphorus in cow’s milk. Aust J Dairy Technol 55(1):23–27Google Scholar
  20. 20.
    Navarro-Alarcón M, Cabrera-Vique C, Ruiz-López MD, Olalla M, Artacho R, Giménez R, Quintana V, Bergillos T (2011) Levels of Se, Zn, Mg and Ca in commercial goat and cow milk fermented products: relationship with their chemical composition and probiotic starter culture. Food Chem 129(3):1126–1131CrossRefGoogle Scholar
  21. 21.
    Park YW (2000) Comparison of mineral and cholesterol composition of different commercial goat milk products manufactured in USA. Small Ruminant Res 37(1–2):115–124CrossRefGoogle Scholar
  22. 22.
    Martín-Diana AB, Janer C, Peláez C, Requena T (2003) Development of a fermented goat’s milk containing probiotic bacteria. Int Dairy J 13:827–833CrossRefGoogle Scholar
  23. 23.
    Güler Z (2007) Levels of 24 minerals in local milk, its strained yoghurt and salted yoghurt (tuzlu yoghurt). Small Ruminant Res 71(1–3):130–137CrossRefGoogle Scholar
  24. 24.
    Güler Z, Sanal H (2009) The essential mineral concentration of Torba yogurts and their wheys compared with yogurt made with cows’, ewes’ and goats’ milks. Int J Food Sci Nutr 60(2):153–164PubMedCrossRefGoogle Scholar
  25. 25.
    Ceballos LS, Morales ER, Adarve GDT, Castro JD, Martínez LP, Sampelayo MRS (2009) Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Compos Anal 22(4):322–329CrossRefGoogle Scholar
  26. 26.
    Chen Y, Sun T, Wang J, Airden C, Baj M, Zhang H (2009) Comparison of nutrition and microbiological compositions between two types of fermented milk from Tibet in China. Int J Food Sci Nutr 60(7):243–50PubMedCrossRefGoogle Scholar
  27. 27.
    Park YW, Mahoney AW, Hendricks DG (1986) Bioavailability of iron in goat milk compared with cow milk fed to anemic rats. J Dairy Sci 69(10):2608–2615PubMedCrossRefGoogle Scholar
  28. 28.
    Barrionuevo M, Alférez MJM, López-Aliaga I, Sampelayo MRS, Campos MS (2002) Beneficial effect of goat milk on nutritive utilization of iron and copper in malabsorption syndrome. J Dairy Sci 85(3):657–664PubMedCrossRefGoogle Scholar
  29. 29.
    Campos MS, López-Aliaga I, Alférez MJM, Nestares T, Barrionuevo M (2003) Effects of goats’ or cows’ milks on nutritive utilization of calcium and phosphorus in rats with intestinal resection. Brit J Nutr 90(1):61–67PubMedCrossRefGoogle Scholar
  30. 30.
    López-Aliaga I, Alférez MJM, Barrionuevo M, Nestares T, Sanz-Sampelayo MR, Campos MS (2003) Study of nutritive utilization of protein and magnesium in rats with resection of the distal intestine. Beneficial effect of goat milk. J Dairy Sci 86:2958–2966PubMedCrossRefGoogle Scholar
  31. 31.
    Alférez MJM, López-Aliaga I, Nestares T, Díaz J, Barrionuevo M, Ros PB, Campos MS (2006) Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. Int Dairy J 16(7):813–821CrossRefGoogle Scholar
  32. 32.
    Moreno R, Amaro MA, García H, Zurera G (1995) Effects of Manchego-type cheese-making process on contents of mineral elements. Food Chem 53:435–439CrossRefGoogle Scholar
  33. 33.
    Remeuf F (1993) Influence of genetic-polymorphism of caprine alpha(s1)-casein on physicochemical and technological properties of goats milk. Lait 73(5–6):549–557CrossRefGoogle Scholar
  34. 34.
    Pérez-Llamas F, Marín JF, Larqué E, Garaulet M, Zamora S (2003) Effect of protein hydrolysis on the dialysability of amino acids and minerals in infant formulas. J Physiol Biochem 59(1):19–24PubMedCrossRefGoogle Scholar
  35. 35.
    Alférez MJM, López-Aliaga IL, Barrionuevo M, Campos MS (2003) Effect of dietary inclusion of goat milk on the bioavailability of zinc and selenium in rats. J Dairy Res 70(2):181–187PubMedCrossRefGoogle Scholar
  36. 36.
    Díaz-Castro J, Alférez MJM, López-Aliaga I, Nestares T, Campos MS (2009) Effect of calcium-supplemented goat or cow milk on zinc status in rats with nutritional ferropenic anaemia. Int Dairy J 19(2):116–121CrossRefGoogle Scholar
  37. 37.
    Cámara F, Amaro MA, Barberá R, Clemente G (2005) Bioaccessibility of minerals in school meals: comparison between dialysis and solubility methods. Food Chem 92:481–489CrossRefGoogle Scholar
  38. 38.
    Champagne CP, Green-Johnson J, Raymond Y, Barrette J, Buckley N (2009) Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Res Int 42:612–621CrossRefGoogle Scholar
  39. 39.
    Kruger MC, Fear A, Chua WH, Plimmer GG, Schollum LM (2009) The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci Technol 89(3–4):219–231CrossRefGoogle Scholar
  40. 40.
    Rekha CR, Vijayalakshmi G (2010) Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol 109(4):1198–1208PubMedCrossRefGoogle Scholar
  41. 41.
    Pérez-Conesa D, Lopez G, Abellan P, Ros G (2006) Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and symbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric 86:2337–2336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Triana Bergillos-Meca
    • 1
  • Miguel Navarro-Alarcón
    • 1
  • Carmen Cabrera-Vique
    • 1
  • Reyes Artacho
    • 1
  • Manuel Olalla
    • 1
  • Rafael Giménez
    • 1
  • Miriam Moreno-Montoro
    • 1
  • Alfonso Ruiz-Bravo
    • 2
  • Agustín Lasserrot
    • 3
  • Mª Dolores Ruiz-López
    • 1
    • 4
  1. 1.Dpto. de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de Granada, Campus de CartujaGranadaSpain
  2. 2.Dpto. de Microbiología, Facultad de FarmaciaUniversidad de Granada, Campus de CartujaGranadaSpain
  3. 3.Empresa Biotmicrogen S.L., Campus Tecnológico de la SaludGranadaSpain
  4. 4.Instituto de Nutrición y Tecnología de los AlimentosUniversidad de Granada, Campus de CartujaGranadaSpain

Personalised recommendations