Biological Trace Element Research

, Volume 150, Issue 1–3, pp 441–450 | Cite as

Selenium Protects Bone Marrow Stromal Cells Against Hydrogen Peroxide-Induced Inhibition of Osteoblastic Differentiation by Suppressing Oxidative Stress and ERK Signaling Pathway

  • Hongmei Liu
  • Weixia Bian
  • Songxiu Liu
  • Kaixun Huang
Article

Abstract

Osteoporosis is a bone disease that leads to an increased risk of fracture. Oxidative stress may play a major role in the development of osteoporosis in part by inhibiting osteoblastic differentiation of bone marrow stromal cells (MSCs). Some evidence suggested that antioxidant selenium could prevent osteoporosis, but the underlying mechanism remains unclear. In this work, the effect of sodium selenite on H2O2-induced inhibition of osteoblastic differentiation of primary rat bone MSCs and the related mechanisms were examined. Pretreatment with selenite inhibited the adverse effect of H2O2 on osteoblastic differentiation of MSCs, based on alkaline phosphatase activity, gene expression of type I collagen and osteocalcin, and matrix mineralization. In addition, selenite pretreatment also suppressed the activation of extracellular signal-regulated kinase (ERK) induced by H2O2. The above effects were mediated by the antioxidant effect of selenite. Selenite enhanced the gene expression and activity of glutathione peroxidase, reversed the decreased total antioxidant capacity and reduced glutathione, and suppressed reactive oxygen species production and lipid peroxidation level in H2O2-treated MSCs. These results showed that selenite protected MSCs against H2O2-induced inhibition of osteoblastic differentiation through inhibiting oxidative stress and ERK activation, which provided, for the first time, the mechanistic explanation for the negative association of selenium status and risk of osteoporosis in terms of bone formation.

Keywords

Selenium Marrow stromal cells Osteoblastic differentiation Oxidative stress Extracellular signal-regulated kinase 

Abbreviations

ALP

Alkaline phosphatase

BMD

Bone mineral densities

BSA

Bovine serum albumin

Col I

Type I collagen

2,7-DCFH-DA

2,7-Dichlorofluorescein diacetate

ECL

Enhanced chemiluminescence

ERK1/2

Extracellular signal-regulated kinase 1 and 2

GPx

Glutathione peroxidase

GPx1

Cellular GPx

GSH

Reduced glutathione

JNK

c-Jun N-terminalkinase

MAPKs

Mitogen-activated protein kinases

MDA

Malondialdehyde

MSCs

Marrow stromal cells

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCS

Newborn calf serum

OC

Osteocalcin

PBS

Phosphate-buffered saline

ROS

Reactive oxygen species

T-AOC

Total antioxidant capacity

Notes

Acknowledgments

We thank the faculty from Analytical and Testing Center of Huazhong University of Science and Technology. This work was supported by the National Natural Science Foundation of China (grant no. 30700136 and 31170775).

References

  1. 1.
    Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332(5):305–311. doi:10.1056/NEJM199502023320506 PubMedCrossRefGoogle Scholar
  2. 2.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31(3):266–300. doi:10.1210/er.2009-0024 PubMedCrossRefGoogle Scholar
  3. 3.
    Sendur OF, Turan Y, Tastaban E, Serter M (2009) Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76(5):514–518. doi:10.1016/j.jbspin.2009.02.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360(1–2):81–86. doi:10.1016/j.cccn.2005.04.014 PubMedCrossRefGoogle Scholar
  5. 5.
    Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage—implications for the treatment of osteoporosis. Free Radic Biol Med 50(10):1314–1323. doi:10.1016/j.freeradbiomed.2011.02.016 PubMedCrossRefGoogle Scholar
  6. 6.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314(1):197–207. doi:S0006291X03026834 PubMedCrossRefGoogle Scholar
  7. 7.
    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31(4):509–519. doi:S0891584901006104 PubMedCrossRefGoogle Scholar
  8. 8.
    Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL (2009) Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 284(40):27438–27448. doi:10.1074/jbc.M109.023572 PubMedCrossRefGoogle Scholar
  9. 9.
    Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F (2010) Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem 111(5):1199–1209. doi:10.1002/jcb.22846 PubMedCrossRefGoogle Scholar
  10. 10.
    Mackinnon ES, Rao AV, Josse RG, Rao LG (2011) Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int 22(4):1091–1101. doi:10.1007/s00198-010-1308-0 PubMedCrossRefGoogle Scholar
  11. 11.
    Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16(1):135–140. doi:10.1359/jbmr.2001.16.1.135 PubMedCrossRefGoogle Scholar
  12. 12.
    Ruiz-Ramos M, Vargas LA, Fortoul Van der Goes TI, Cervantes-Sandoval A, Mendoza-Nunez VM (2010) Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging 14(6):467–472. doi:10.1007/s12603-010-0099-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183. doi:10.1210/er.22.2.153 PubMedCrossRefGoogle Scholar
  14. 14.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. doi:10.1016/S0140-6736(00)02490-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163(1):9–17. doi:10.1093/aje/kwj005 PubMedCrossRefGoogle Scholar
  16. 16.
    Moreno-Reyes R, Egrise D, Neve J, Pasteels JL, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16(8):1556–1563. doi:10.1359/jbmr.2001.16.8.1556 PubMedCrossRefGoogle Scholar
  17. 17.
    Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E, Mendoza-Nunez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Muscoskel Disord 8:124. doi:10.1186/1471-2474-8-124 CrossRefGoogle Scholar
  18. 18.
    Sontakke AN, Tare RS (2002) A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 318(1–2):145–148. doi:10.1016/s0009-8981(01)00766-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Mlakar SJ, Osredkar J, Prezelj J, Marc J (2010) The antioxidant enzyme GPX1 gene polymorphisms are associated with low BMD and increased bone turnover markers. Dis Markers 29(2):71–80. doi:10.3233/DMA-2010-0728 PubMedGoogle Scholar
  20. 20.
    Turan B, Can B, Delilbasi E (2003) Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clin Rheumatol 22(6):432–436. doi:10.1007/s10067-003-0809-z PubMedCrossRefGoogle Scholar
  21. 21.
    Chung YW, Kim TS, Lee SY, Lee SH, Choi Y, Kim N, Min BM, Jeong DW, Kim IY (2006) Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol Lett 160(2):143–150. doi:10.1016/j.toxlet.2005.06.019 PubMedCrossRefGoogle Scholar
  22. 22.
    Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK (2012) Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 418(2):247–253. doi:10.1016/j.bbrc.2012.01.005 PubMedCrossRefGoogle Scholar
  23. 23.
    Maniatopoulos C, Sodek J, Melcher AH (1988) Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254(2):317–330PubMedCrossRefGoogle Scholar
  24. 24.
    Watkinson JH (1966) Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene. Anal Chem 38(1):92–97PubMedCrossRefGoogle Scholar
  25. 25.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  27. 27.
    Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y (2008) Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem 283(22):15319–15327. doi:10.1074/jbc.M800021200 PubMedCrossRefGoogle Scholar
  28. 28.
    Wu Q, Huang K, Xu H (2003) Effects of long-term selenium deficiency on glutathione peroxidase and thioredoxin reductase activities and expressions in rat aorta. J Inorg Biochem 94(4):301–306. doi:S0162013403000588 PubMedCrossRefGoogle Scholar
  29. 29.
    Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibited by osteopontin. Circ Res 84(2):166–178. doi:10.1161/01.RES.84.2.166 PubMedCrossRefGoogle Scholar
  30. 30.
    Hafeman D, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104(5):580–587PubMedGoogle Scholar
  31. 31.
    Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285. doi:10.1016/j.clinbiochem.2003.11.015 PubMedCrossRefGoogle Scholar
  32. 32.
    Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169PubMedCrossRefGoogle Scholar
  33. 33.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedCrossRefGoogle Scholar
  34. 34.
    Liu H, Yuan L, Xu S, Wang K, Zhang T (2005) Cholestane-3beta,5alpha,6beta-triol inhibits osteoblastic differentiation and promotes apoptosis of rat bone marrow stromal cells. J Cell Biochem 96(1):198–208. doi:10.1002/jcb.20510 PubMedCrossRefGoogle Scholar
  35. 35.
    Uğuz AC, Nazıroğlu M (2012) Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res 37(8):1631–1638. doi:10.1007/s11064-012-0758-5 PubMedCrossRefGoogle Scholar
  36. 36.
    Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23. doi:10.1007/s00232-009-9212-2 PubMedGoogle Scholar
  37. 37.
    Dreher I, Schutze N, Baur A, Hesse K, Schneider D, Kohrle J, Jakob F (1998) Selenoproteins are expressed in fetal human osteoblast-like cells. Biochem Biophys Res Commun 245(1):101–107. doi:10.1006/bbrc.1998.8393 PubMedCrossRefGoogle Scholar
  38. 38.
    Schutze N, Bachthaler M, Lechner A, Kohrle J, Jakob F (1998) Identification by differential display PCR of the selenoprotein thioredoxin reductase as a 1 alpha,25(OH)2-vitamin D3-responsive gene in human osteoblasts–regulation by selenite. Biofactors 7(4):299–310PubMedCrossRefGoogle Scholar
  39. 39.
    Gouveia CH, Christoffolete MA, Zaitune CR, Dora JM, Harney JW, Maia AL, Bianco AC (2005) Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoblastic cell line during differentiation. Endocrinology 146(1):195–200. doi:10.1210/en.2004-1043 PubMedCrossRefGoogle Scholar
  40. 40.
    Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235. doi:10.1634/stemcells.2005-0117 PubMedCrossRefGoogle Scholar
  41. 41.
    McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8(9–10):1775–1789. doi:10.1089/ars.2006.8.1775 PubMedCrossRefGoogle Scholar
  42. 42.
    Yang GQ Research on selenium related problems in human health in China. In: the Third International Symposium on Selenium in Biology and Medicine, 1987. New York: AVI, pp 9–32Google Scholar
  43. 43.
    Vinceti M, Maraldi T, Bergomi M, Malagoli C (2009) Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health 24(3):231–248. doi:10.1515/REVEH.2009.24.3.231 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hongmei Liu
    • 1
    • 2
  • Weixia Bian
    • 1
  • Songxiu Liu
    • 1
  • Kaixun Huang
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaWuhanPeople’s Republic of China

Personalised recommendations