Biological Trace Element Research

, Volume 150, Issue 1–3, pp 424–432 | Cite as

Zinc Inhibits High Glucose-Induced Apoptosis in Peritoneal Mesothelial Cells

  • Xiuli Zhang
  • Dan Liang
  • Baolei Guo
  • Lina Yang
  • Lining Wang
  • Jianfei MaEmail author


Zinc (Zn) plays an important role in influencing many types of apoptosis. However, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the effects of Zn on high glucose (HG)-induced apoptosis in rat PMCs (RPMCs) and examined the underlying molecular mechanisms. We found that Zn supplementation inhibited HG-induced RPMC apoptosis significantly, by attenuating reactive oxygen species (ROS) production, inhibiting HG-induced sFasR and sFasL over-expression, caspase-8 and caspase-3 activation, and inhibiting release of cytochrome c from mitochondria to the cytosol. Further analysis revealed that Zn supplementation facilitated cell survival through activation of the phosphatidylinositol 3-kinase/Akt signaling pathway and MAPK/ERK pathways. These results indicate that Zn can inhibit apoptosis in HG-induced RPMCs by several independent mechanisms, including an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-3 activation.


Rat peritoneal mesothelial cells Zinc High glucose Apoptosis 



Rat peritoneal mesothelial cells


Human peritoneal mesothelial cells


High glucose


Continuous ambulatory peritoneal dialysis


Dulbecco’s modified Eagle’s medium


Fluorescein isothiocyanate




Radioimmune precipitation assay


Transforming growth factor


Phosphate-buffered saline




Tris-buffered saline


Peritoneal dialysis fluid


Tumor necrosis factor-α


Mitogen-activated protein kinase


Extracellular-signal-regulated kinase


Propidium iodide


Reactive oxygen species


  1. 1.
    Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA et al (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413PubMedCrossRefGoogle Scholar
  2. 2.
    Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA et al (2005) Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 16:425–436PubMedCrossRefGoogle Scholar
  3. 3.
    Mortier S, De Vriese AS, Lameire N (2003) Recent concepts in the molecular biology of the peritoneal membrane—implications for more biocompatible dialysis solutions. Blood Purif 21:14–23PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmad M, Shah H, Pliakogiannis T, Oreopoulos DG (2007) Prevention of membrane damage in patient on peritoneal dialysis with new peritoneal dialysis solutions. Int Urol Nephrol 39:299–312PubMedCrossRefGoogle Scholar
  5. 5.
    Ortiz A (2000) Nephrology forum: apoptotic regulatory proteins in renal injury. Kidney Int 58:467–485PubMedCrossRefGoogle Scholar
  6. 6.
    Zheng ZH, Ye RG, Bergstrom J, Lindholm B (2000) Effect of dialysate composition on the apoptosis and proliferation of human peritoneal mesothelial cells and protein expression of Fas and c-Myc. Adv Perit Dial 16:31–35PubMedGoogle Scholar
  7. 7.
    Kaifu K, Kiyomoto H, Hitomi H, Matsubara K, Hara T, Moriwaki K (2009) Insulin attenuates apoptosis induced by high glucose via the PI3-kinase/Akt pathway in rat peritoneal mesothelial cells. Nephrol Dial Transplant 24:809–815PubMedCrossRefGoogle Scholar
  8. 8.
    Boulanger E, Wautier MP, Gane P, Mariette C, Devuyst O, Wautier JL (2004) The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol Dial Transplant 19:2208–2216PubMedCrossRefGoogle Scholar
  9. 9.
    Alscher DM, Biegger D, Mettang T, van der Kuip H, Kuhlmann U, Fritz P (2003) Apoptosis of mesothelial cells caused by unphysiological characteristics of peritoneal dialysis fluids. Artif Organs 27:1035–1040PubMedCrossRefGoogle Scholar
  10. 10.
    Gotloib L (2009) Mechanisms of cell death during peritoneal dialysis. A role for osmotic and oxidative stress. Contrib Nephrol 163:35–44PubMedCrossRefGoogle Scholar
  11. 11.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedCrossRefGoogle Scholar
  12. 12.
    Sunderman FW Jr (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25:134–142PubMedGoogle Scholar
  13. 13.
    Fraker PJ, Telford WG (1997) A reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 215:229–236PubMedGoogle Scholar
  14. 14.
    Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B (2000) Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. Am J Clin Nutr 71:81–87PubMedGoogle Scholar
  15. 15.
    Bao S, Knoell DL (2006) Zinc modulates airway epithelium susceptibility to death receptor-mediated apoptosis. Am J Physiol Lung Cell Mol Physiol 290:L433–L441PubMedCrossRefGoogle Scholar
  16. 16.
    Mansouri K, Halsted JA, Gombos EA (1970) Zinc, copper, magnesium and calcium in dialyzed and nondialyzed uremic patients. Arch Intern Med 125:88–93PubMedCrossRefGoogle Scholar
  17. 17.
    Thomson NM, Stevens BJ, Humphery TJ, Atkins RC (1983) Comparison of trace elements in peritoneal dialysis, hemodialysis, and uremia. Kidney Int 23:9–14PubMedCrossRefGoogle Scholar
  18. 18.
    Padovese P, Gallieni M, Brancaccio D, Pietra R, Fortaner S, Sabbioni E (1992) Trace elements in dialysis fluids and assessment of the exposure of patients on regular hemodialysis, hemofiltration and continuous ambulatory peritoneal dialysis. Nephron 61:442–448PubMedCrossRefGoogle Scholar
  19. 19.
    Wang AY, Sea MM, Ip R, Law MC, Chow KM, Lui SF et al (2002) Independent effects of residual renal function and dialysis adequacy on dietary micronutrient intakes in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 76:569–576PubMedGoogle Scholar
  20. 20.
    Hjelle JT, Golinska BT, Waters DC, Steidley KR, McCarroll DR, Dobbie JW (1989) Isolation and propagation in vitro of peritoneal mesothelial cells. Perit Dial Int 9:341–347PubMedGoogle Scholar
  21. 21.
    Zhang D, Li Y, Zhu T, Zhang F, Yang Z, Miao D (2011) Zinc supplementation results in improved therapeutic potential of bone marrow-derived mesenchymal stromal cells in a mouse ischemic limb model. Cytotherapy 13:156–164PubMedCrossRefGoogle Scholar
  22. 22.
    Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH et al (2009) HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 20:567–581PubMedCrossRefGoogle Scholar
  23. 23.
    Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143PubMedCrossRefGoogle Scholar
  24. 24.
    Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRefGoogle Scholar
  25. 25.
    Nishiura T, Abe K (2007) Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol 52:778–785PubMedCrossRefGoogle Scholar
  26. 26.
    Holmstrom TH, Eriksson JE (2000) Phosphorylation-based signaling in Fas receptor-mediated apoptosis. Crit Rev Immunol 20:121–152PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW (2011) Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 44:618–623PubMedGoogle Scholar
  28. 28.
    Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signaling by death receptors. Eur J Biochem 254:439–459PubMedCrossRefGoogle Scholar
  29. 29.
    Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nut 125:823–829Google Scholar
  30. 30.
    Bao B, Prasad AS, Beck FW, Snell D, Suneja A, Sarkar FH et al (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 152:67–80PubMedCrossRefGoogle Scholar
  31. 31.
    Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K (2002) Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2:567–578PubMedCrossRefGoogle Scholar
  32. 32.
    Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE (2003) Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278:28258–28263PubMedCrossRefGoogle Scholar
  33. 33.
    Marte BM, Downward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22:355–358PubMedCrossRefGoogle Scholar
  34. 34.
    Liang D, Yang M, Guo B, Cao J, Yang L, Guo X et al. (2012) Zinc inhibits H(2)O (2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res [Epub ahead of print]Google Scholar
  35. 35.
    Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiuli Zhang
    • 1
    • 2
  • Dan Liang
    • 3
    • 4
  • Baolei Guo
    • 3
  • Lina Yang
    • 1
  • Lining Wang
    • 1
  • Jianfei Ma
    • 1
    Email author
  1. 1.Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangPeople’s Republic of China
  2. 2.Department of NephrologyBenxi Railway HospitalBenxiPeople’s Republic of China
  3. 3.Department of OrthopedicsThe First Affiliated Hospital of China Medical UniversityShenyangPeople’s Republic of China
  4. 4.Troops of 95935 unitHaerbinPeople’s Republic of China

Personalised recommendations