Biological Trace Element Research

, Volume 149, Issue 1, pp 64–70

Vitamin A Modulates the Expression of Genes Involved in Iron Bioavailability

  • Marta Citelli
  • Luciana Linhares Bittencourt
  • Simone Vargas da Silva
  • Anna Paola Trindade Pierucci
  • Cristiana Pedrosa


Iron bioavailability seems to be regulated by vitamin A (VA) but the molecular events involved in this mechanism are not well understood. It is also known that retinoids mediate most of their function via interaction with retinoid receptors, which act as ligand-activated transcription factors controlling the expression of a number of target genes. Here, we evaluated the VA effects on the modulation of the levels of mRNA encoding proteins involved in the iron bioavailability, whether in the intestinal absorption process or in the liver iron metabolism. The expression of genes involved in iron intestinal absorption (divalent metal transporter 1, duodenal cytochrome B, ferroportin 1 FPN1, and ferritin) were evaluated in vitro by treating Caco-2 cells with retinoic acid or in vivo by observing the effects of vitamin A deficiency (VAD) in BALB/C mice. Liver hepcidin and ferritin mRNA levels were upregulated by VAD; however, this condition did not promote any change on the expression of those genes that participate in the iron absorption. Moreover, data from the in vitro analysis showed that VA induced FPN1 gene expression by a hepcidin-independent manner. Therefore, the in vivo results support the idea that VAD may not affect iron absorption but would rather affect iron mobilization mechanisms. On the other hand, our results using Caco-2 cells raises the possibility that VA addition to intestinal epithelium may improve iron absorption through the induction of FPN1 gene expression.


Vitamin A Iron Gene expression Bioavailability Caco-2 


  1. 1.
    World Health Organization (2011) Micronutrient deficiencies. Accessed 08 September 2011
  2. 2.
    Gamble MV, Palafox NA, Dancheck B, Ricks MO, Briand K, Semba RD (2004) Relationship of vitamin A deficiency, iron deficiency, and inflammation to anemia among preschool children in the Republic of the Marshall Islands. Eur J Clin Nutr 58:1396–1401PubMedCrossRefGoogle Scholar
  3. 3.
    Palafox NA, Gamble MV, Dancheck B, Ricks MO, Briand K, Semba RD (2003) Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition 19:405–408PubMedCrossRefGoogle Scholar
  4. 4.
    Mason JB, Lotfi M, Dalmiya N, Sethuraman K, Deitchler M (2001) The micronutrient report: current progress and trends in the control of vitamin A, iodine, and iron deficiencies. Accessed 08 September 2011
  5. 5.
    Ramalho A, Padilha P, Saunders C (2008) Critical analysis of Brazilian studies about vitamin A deficiency in maternal child group. Rev Paul Pediatr 26:392–399CrossRefGoogle Scholar
  6. 6.
    Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381PubMedCrossRefGoogle Scholar
  7. 7.
    Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38PubMedCrossRefGoogle Scholar
  8. 8.
    Nemeth E, Ganz T (2009) The role of hepcidin in iron metabolism. Acta Haematol 122:78–86PubMedCrossRefGoogle Scholar
  9. 9.
    Mejía LA, Chew F (1988) Hematological effect of supplementing anemic children with vitamin A alone and in combinations with iron. Am J Clin Nutr 48:595–600PubMedGoogle Scholar
  10. 10.
    Bloem MW, Wedel M, van Agtamal EJ, Speek AJ, Saowakontha S, Schreurs WHP (1990) Vitamin A intervention: short-term effects of a single, oral, massive dose on iron metabolism. Am J Clin Nutr 51:76–79PubMedGoogle Scholar
  11. 11.
    Kelleher SL, Lönnerdal B (2005) Low vitamin A intake affects milk iron and iron transporters in rat mammary gland and liver. J Nutr 135:27–32PubMedGoogle Scholar
  12. 12.
    García-Casal MN, Layrisse M, Solano L, Baron MA, Arguello F, Llovera D et al (1997) Vitamin A and β-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr 128:646–650Google Scholar
  13. 13.
    García-Casal MN, Leets I, Layrisse M (2000) Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells. J Nutr 130:5–9PubMedGoogle Scholar
  14. 14.
    Gargari BP, Razavieh SV, Mahboob S, Niknafs B, Kooshavar H (2006) Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model. Nutrition 22:38–44CrossRefGoogle Scholar
  15. 15.
    Walczyk T, Davidsson L, Rossander-Hulthen L, Hallberg L, Hurrell RF (2003) No enhancing effect of vitamin A on iron absorption in humans. Am J Clin Nutr 77:144–149PubMedGoogle Scholar
  16. 16.
    Arruda SF, Siqueira EMA, Valência FF (2009) Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition 25:472–478PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor A, Hogan BL, Watt FM (1985) Biosynthesis of EGF receptor, transferrin receptor and collagen by cultured human keratinocytes and the effect of retinoic acid. Exp Cell Res 159:47–54PubMedCrossRefGoogle Scholar
  18. 18.
    Iturralde M, Vass JK, Oria R, Brock JH (1992) Effect of iron and retinoic acid n the control of transferrin receptor and ferritin in the human promonocytic cell line U937. Biochim Biophys Acta 1133:241–246PubMedCrossRefGoogle Scholar
  19. 19.
    Douer D, Koeffler HP (1982) Retinoic acid enhances growth of human early erythroid progenitor cells in vivo. J Clin Invest 69:1039–1041PubMedCrossRefGoogle Scholar
  20. 20.
    Giller T, Hennes U, Kempen HJ (1995) Regulation of human apolipoprotein A-I expression in Caco-2 and HepG-2 cells by all-trans and 9-cis retinoic acids. J Lipid Res 36:1021–1028PubMedGoogle Scholar
  21. 21.
    Anderle P, Rakhmanova V, Woodford K, Zerangue N, Sadée W (2003) Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated Caco-2 cells compared to human intestines. Pharm Res 20:3–15PubMedCrossRefGoogle Scholar
  22. 22.
    Schäffera MW, Roya SS, Mukherjeea S et al (2010) Qualitative and quantitative analysis of retinol, retinyl esters, tocopherols and selected carotenoids out of various internal organs form different species by HPLC. Anal Methods 2:1320–1332CrossRefGoogle Scholar
  23. 23.
    Rottman JN, Widom RLL, Nadal-Ginard B, Mahdavi V, Karathanasis SK (1991) A retinoic acid responsive element in the apolipoprotein A-I gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11:3814–3820PubMedGoogle Scholar
  24. 24.
    Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM (1991) A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555–561PubMedCrossRefGoogle Scholar
  25. 25.
    Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128:1555–1561PubMedGoogle Scholar
  26. 26.
    Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N, Roth MP, Coppin H (2002) Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51:648–653PubMedCrossRefGoogle Scholar
  27. 27.
    Mehdad A, Siqueira EM, Arruda SF (2010) Effect of vitamin A deficiency on iron bioavailability. Ann Nutr Metab 57:35–39PubMedCrossRefGoogle Scholar
  28. 28.
    Chaston T, Chung B, Mascarenhas M, Marks J, Patel B, Srai SK, Sharp P (2008) Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells. Gut 57:374–382PubMedCrossRefGoogle Scholar
  29. 29.
    Chiu HJ, Fischman DA, Hammerling U (2008) Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP-1-dependent energy deprivation. FASEB J 22:3878–3887PubMedCrossRefGoogle Scholar
  30. 30.
    Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V (2006) TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107:3727–3732PubMedCrossRefGoogle Scholar
  31. 31.
    Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, Tsuji Y (2006) Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 26:2845–2856PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM (2000) Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 16:5818–5827CrossRefGoogle Scholar
  33. 33.
    Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516PubMedCrossRefGoogle Scholar
  34. 34.
    Hintze KJ, Theil EC (2005) DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-l expression. Proc Natl Acad Sci 102:15048–15052PubMedCrossRefGoogle Scholar
  35. 35.
    Wasserman WW, Fahl WE (1997) Functional antioxidant responsive elements. Proc Natl Acad Sci 94:5361–5366PubMedCrossRefGoogle Scholar
  36. 36.
    Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276PubMedGoogle Scholar
  37. 37.
    Fleming RE (2008) Iron and inflammation: cross-talk between pathways regulating hepcidin. J Mol Med 86:491–494PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marta Citelli
    • 1
    • 4
  • Luciana Linhares Bittencourt
    • 2
  • Simone Vargas da Silva
    • 3
  • Anna Paola Trindade Pierucci
    • 2
  • Cristiana Pedrosa
    • 2
  1. 1.Instituto de NutriçãoUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Nutrição Josué de CastroUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Instituto de Nutrição, Departamento de Nutrição Básica e ExperimentalUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations