Biological Trace Element Research

, Volume 147, Issue 1–3, pp 408–417 | Cite as

One-Step Bulk Preparation of Calcium Carbonate Nanotubes and Its Application in Anticancer Drug Delivery

  • Jing Tang
  • Dong-Mei Sun
  • Wen-Yu Qian
  • Rong-Rong Zhu
  • Xiao-Yu Sun
  • Wen-Rui Wang
  • Kun Li
  • Shi-Long WangEmail author


Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV–vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology.


Biomedical Cellular Nanotubes pH sensitive Drug carrier Inhibitory effect 



This work was financially supported by the Major State Basic Research Development Program of China (973 Program, grant no. 2010CB933901), the National Natural Science Foundation of China (grant no. 50802063, 31140038), the Research Fund for the Doctoral Program of Higher Education of China (grant no. 20090072120019), Science and Technology Commission of Shanghai Municipality (grant no. 11411951500), the Fundamental Research Funds for the Central Universities, and Young Excellent Talents Plans in Tongji University.


  1. 1.
    Luo B, Xu S, Luo A et al (2011) Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano 5:1428–1435. doi: 10.1021/nn103213y PubMedCrossRefGoogle Scholar
  2. 2.
    Khajeh M (2010) Silver nanoparticles for the adsorption of manganese from biological samples. Biol Trace Elem Res 138:337–345. doi: 10.1007/s12011-009-8600-x PubMedCrossRefGoogle Scholar
  3. 3.
    Wang WR, Zhu RR, Xiao R et al (2011) The electrostatic interactions between nano-TiO2 and trypsin inhibit the enzyme activity and change the secondary structure of trypsin. Biol Trace Elem Res 142:435–446. doi: 10.1007/s12011-010-8823-x PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang YZ, Li HR, Dai J et al (2010) Spectroscopic studies on the binding of cobalt (II) 1,10-phenanthroline complex to bovine serum albumin. Biol Trace Elem Res 135:136–152. doi: 10.1007/s12011-009-8502-y PubMedCrossRefGoogle Scholar
  5. 5.
    Au C, Mutkus L, Dobson A et al (2007) Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 120:248–256. doi: 10.1007/s12011-007-0067-z PubMedCrossRefGoogle Scholar
  6. 6.
    Kong B, Zhu AW, Luo YP et al (2011) Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem Int Ed 50:1837–1840. doi: 10.1002/anie.201007071 CrossRefGoogle Scholar
  7. 7.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822. doi: 10.1126/science.1095833 PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold AM (1979) Podophyllotoxin derivative VP 16-213. Cancer Chemother Pharmacol 3:71–80. doi: 10.1007/BF00254976 PubMedCrossRefGoogle Scholar
  9. 9.
    Tian X, Zhang FM, Lib WG (2002) Antitumor and antioxidant activity of spin labeled derivatives of podophyllotoxin (GP-1) and congeners. Life Sci 70:2433–2443PubMedCrossRefGoogle Scholar
  10. 10.
    Gordaliza M, Castro MA, DelCorral JM et al (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6:1811–1839. doi: 10.2174/1381612003398582 PubMedCrossRefGoogle Scholar
  11. 11.
    Van-maanen JMS, Retal J, De-vries J et al (1988) Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst 80:1526–1533. doi: 10.1093/jnci/80.19.1526 PubMedCrossRefGoogle Scholar
  12. 12.
    Shah JC, Chen JR, Chow D (1989) Preformulation study of etoposide: identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide. Pharm Res 6:408–412. doi: 10.1023/A:1015935532725 PubMedCrossRefGoogle Scholar
  13. 13.
    Li A, Qin LL, Zhu D et al (2010) Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials 31:748–756. doi: 10.1016/j.biomaterials.2009.09.095 PubMedCrossRefGoogle Scholar
  14. 14.
    Li A, Qin LL, Wang WR et al (2011) The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2:469–477. doi: 10.1016/j.biomaterials.2010.08.107 CrossRefGoogle Scholar
  15. 15.
    Xiao R, Wang WR, Pan LL et al (2011) A sustained folic acid release system based on ternary magnesium/zinc/aluminum layered double hydroxides. J Mater Sci 46:2635–2643. doi: 10.1007/s10853-010-5118-8 CrossRefGoogle Scholar
  16. 16.
    Qin LL, Xue M, Wang WR et al (2010) The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. Int J Pharm 388:223–230. doi: 10.1016/j.ijpharm.2009.12.044 PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu RR, Qin LL, Wang M et al (2009) Preparation, characterization and anti-tumor property of podophyllotoxin-loaded solid lipid nanoparticles. Nanotechnology 20:055702 (7 pp). doi: 10.1088/0957-4484/20/5/055702 Google Scholar
  18. 18.
    Qin LL, Wang SL, Zhang R et al (2008) Two different approaches to synthesizing Mg–Al-layered double hydroxides as folic acid carriers. J Phys Chem Solids 69:2779–2784. doi: 10.1016/j.jpcs.2008.06.144 CrossRefGoogle Scholar
  19. 19.
    Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509. doi: 10.1002/adfm.200400187 CrossRefGoogle Scholar
  20. 20.
    Dolinska B, Mikulska A, Caban A et al (1998) A model for calcium permeation into small intestine. Biol Trace Elem Res 142:456–464. doi: 10.1007/s12011-010-8827-6 CrossRefGoogle Scholar
  21. 21.
    Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182. doi: 10.1038/nm0297-177 PubMedCrossRefGoogle Scholar
  22. 22.
    Wei W, Ma GH, Hu G et al (2008) Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc 130:15808–15810. doi: 10.1021/ja8039585 PubMedCrossRefGoogle Scholar
  23. 23.
    Lee Y, Lee J, Bae CJ et al (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Ad Funct Mater 15:503–509. doi: 10.1002/adfm.200400187 CrossRefGoogle Scholar
  24. 24.
    Han S, Jang B, Oh SM et al (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Ad Funct Mater 15:1845–1850. doi: 10.1002/adfm.200500243 CrossRefGoogle Scholar
  25. 25.
    Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114. doi: 10.1126/science.282.5391.1111 PubMedCrossRefGoogle Scholar
  26. 26.
    Loges N, Graf K, Nasdala L et al (2006) Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules: a bioinspired route to hollow micrometer-sized calcium carbonate particles. Langmuir 22:3073–3080. doi: 10.1021/la0528596 PubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki M, Nagasawa H, Kogure T (2006) Synthesis and structure of hollow calcite particles. Cryst Growth Des 6:2004–2006. doi: 10.1021/cg0602921 CrossRefGoogle Scholar
  28. 28.
    Sugihara H, Inoue K, Nakayama M et al (2009) A novel nanotube of composite of calcium carbonate and calcium sulfate. Mater Lett 63:322–324. doi: 10.1016/j.matlet.2008.10.025 CrossRefGoogle Scholar
  29. 29.
    Yu H, Yu J, Liu S et al (2007) Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem Mater 19:4327–4334. doi: 10.1021/cm070386d CrossRefGoogle Scholar
  30. 30.
    Sun DM, Zhu DZ (2009) Bi-template effect of a vegetal system on the synthesis of alkaline-earth tungstate nanocrystals. J Mater Res 24:347–351. doi: 10.1557/JMR.2009.0072 CrossRefGoogle Scholar
  31. 31.
    Sun DM, Wu QS (2006) A novel method for crystal control: synthesis and design of strontium carbonate with different morphologies by supported liquid membrane. J Appl Crystallogr 39:544–549. doi: 10.1107/S0021889806015925 CrossRefGoogle Scholar
  32. 32.
    Wu QS, Sun DM, Liu HJ et al (2004) Abnormal polymorph conversion of calcium carbonate and nano-self-assembly of vaterite by a supported liquid membrane system. Cryst Growth Des 4:717–720. doi: 10.1021/cg034247u CrossRefGoogle Scholar
  33. 33.
    Sun DM, Zhu DZ (2008) Synthesis and design of MnCO3 crystals with different morphologies by supported liquid membrane. J Chem Crystallogr 38:949–952. doi: 10.1007/s10870-008-9419-6 CrossRefGoogle Scholar
  34. 34.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Method 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  35. 35.
    Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed 31:153–169. doi: 10.1002/anie.199201531 CrossRefGoogle Scholar
  36. 36.
    Naka K, Keum DK, Tanaka Y et al (2000) Control of crystal polymorphs by a ‘latent inductor’: crystallization of calcium carbonate in conjunction with in situ radical polymerization of sodium acrylate in aqueous solution. J Chem Soc 16:1537–1538. doi: 10.1039/b004649n Google Scholar
  37. 37.
    Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York, p 104Google Scholar
  38. 38.
    Smith BL, Schaffer TE, Viani M et al (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763. doi: 10.1038/21607 CrossRefGoogle Scholar
  39. 39.
    Sangwal K (1996) Growth kinetics and surface morphology of crystals grown from solutions: recent observations and their interpretations. Prog Cryst Growth Charact 36:163–248. doi: 10.1016/S0960-8974(98)00009-6 Google Scholar
  40. 40.
    Mann S, Didymus JM, Sanderson NP et al (1990) Morphological influence of functionalized and non-functionalized α, ω-dicarboxylates on calcite crystallization. J Chem Soc Faraday Trans 86:1873–1880. doi: 10.1039/FT9908601873 CrossRefGoogle Scholar
  41. 41.
    Didymus JM, Oliver P, Mann S (1993) Influence of low-molecular-weight and macromolecular organic additives on the morphology of calcium carbonate. J Chem Soc Faraday Trans 89:2891–2900. doi: 10.1039/FT9938902891 CrossRefGoogle Scholar
  42. 42.
    Shivkumara C, Singh P, Gupta A et al (2006) Synthesis of vaterite CaCO3 by direct precipitation using glycine and L-alanine as directing agents. Mater Res Bull 41:1455–1460. doi: 10.1016/j.materresbull.2006.01.026 CrossRefGoogle Scholar
  43. 43.
    Nan ZD, Chen XN, Yang QQ et al (2008) Structure transition from aragonite to vaterite and calcite by the assistance of SDBS. J Colloid Interface Sci 325:331–336. doi: 10.1016/j.jcis.2008.05.045 PubMedCrossRefGoogle Scholar
  44. 44.
    Lee MK, Lim SJ, Kim CK (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28:2137–2146. doi: 10.1016/j.biomaterials.2007.01.014 PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts JE, Wielgus AR, Boyes WK et al (2008) Phototoxicity and cytotoxicity of fullerol in human lens epithelial cell. Toxicol Appl Pharmacol 228:49–58. doi: 10.1016/j.taap.2009.09.021 PubMedCrossRefGoogle Scholar
  46. 46.
    Choy JH, Jung JS, Oh JM (2004) Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 25:3059–3064. doi: 10.1016/j.biomaterials.2003.09.083 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jing Tang
    • 1
  • Dong-Mei Sun
    • 1
  • Wen-Yu Qian
    • 1
  • Rong-Rong Zhu
    • 1
  • Xiao-Yu Sun
    • 1
  • Wen-Rui Wang
    • 1
  • Kun Li
    • 1
  • Shi-Long Wang
    • 1
    Email author
  1. 1.School of Life Science and TechnologyTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations