Biological Trace Element Research

, Volume 147, Issue 1–3, pp 75–83 | Cite as

Cord Blood Levels of Toxic and Essential Trace Elements and Their Determinants in the Terai Region of Nepal: A Birth Cohort Study

  • Rajendra Prasad Parajuli
  • Takeo Fujiwara
  • Masahiro Umezaki
  • Hana Furusawa
  • Ping Han Ser
  • Chiho Watanabe
Article

Abstract

The purpose of this study is to evaluate the cord blood level of toxic and trace elements and to identify their determinants in Terai, Nepal. One hundred pregnant women were recruited from one hospital in Chitwan, Nepal in 2008. The cord blood levels of toxic [lead (Pb), arsenic (As), and cadmium (Cd)], essential trace elements [zinc (Zn), selenium (Se), and copper (Cu)], demographic, socioeconomic, and behavioral variables were measured. The mean values of Pb, As, Cd, Zn, Se, and Cu in cord blood level were found as 31.7, 1.46, 0.39, 2,286, 175, and 667 μg/L, respectively. In the multivariate regression model, cord blood As levels from less educated mothers were higher than those from educated mothers (coefficient = 0.01, 95% confidence interval [CI] = 0.02–0.00). The maternal age was positively associated with the cord blood Cd level (coefficient = 0.02, 95% CI = 0.01–0.03), while it was negatively associated with the cord blood As level (coefficient = 0.01, 95% CI = 0.03–0.01). Cord blood levels of Pb, Zn, Se, and Cu were not associated with maternal age, socioeconomic status, living environment, and smoking status. As and Cd levels were relatively lower than those reported in previous studies in Asia, while the levels of Pb and the trace elements were similar. Less educated mothers are more likely to become a higher in utero As source to their fetus, and fetuses of older mothers were more likely to have higher in utero Cd exposure in Terai, Nepal.

Keywords

Toxic elements Trace elements Terai Nepal Cord blood Fetus exposure Maternal source 

Notes

Acknowledgments

Special thanks are due to all participants, especially to those mothers who participated in the present study. I would like to express my gratitude to Dr. Keshav Raj Bhurtel, senior gynecologist and Associate Professor at Chitwan Medical College, Dr. Shanti Regmi, senior pediatrician at Bharatpur Hospital, and all technical staff of the hospital for their support during this study. This study was funded by Grant-in-Aid for Scientific Research by Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Society for the Promotion of Science (JSPS; KAKENHI project number: 21406021, 20310146).

References

  1. 1.
    Hill DS, Wlodarczyk BJ, Finnell RH (2008) Reproductive consequences of oral arsenate exposure during pregnancy in a mouse model. Birth Defects Res B Dev Reprod Toxicol 83(1):40–47. doi:10.1002/bdrb.20142 PubMedCrossRefGoogle Scholar
  2. 2.
    Hill DS, Wlodarczyk BJ, Mitchell LE, Finnell RH (2009) Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model. Toxicol Appl Pharmacol 239(1):29–36. doi:10.1016/j.taap.2009.05.009 PubMedCrossRefGoogle Scholar
  3. 3.
    Regan CM (1989) Lead-impaired neurodevelopment. Mechanisms and threshold values in the rodent. Neurotoxicol Teratol 11(6):533–537PubMedCrossRefGoogle Scholar
  4. 4.
    Bhatnagar S, Natchu UC (2004) Zinc in child health and disease. Indian J Pediatr 71(11):991–995PubMedCrossRefGoogle Scholar
  5. 5.
    Jedrychowski W, Perera F, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-lead levels: the prospective cohort study in three-year olds. Early Hum Dev 85(8):503–510. doi:10.1016/j.earlhumdev.2009.04.006 PubMedCrossRefGoogle Scholar
  6. 6.
    Jedrychowski W, Perera F, Jankowski J, Rauh V, Flak E, Caldwell KL, Jones RL, Pac A, Lisowska-Miszczyk I (2008) Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). Int J Hyg Environ Health 211(3–4):345–351. doi:10.1016/j.ijheh.2007.07.023 PubMedCrossRefGoogle Scholar
  7. 7.
    Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32(4):270–278. doi:10.1159/000203075 PubMedCrossRefGoogle Scholar
  8. 8.
    Patel AB, Mamtani MR, Thakre TP, Kulkarni H (2006) Association of umbilical cord blood lead with neonatal behavior at varying levels of exposure. Behav Brain Funct 2:22. doi:10.1186/1744-9081-2-22 PubMedCrossRefGoogle Scholar
  9. 9.
    Bellinger D, Leviton A, Waternaux C, Allred E (1985) Methodological issues in modeling the relationship between low-level lead exposure and infant development: examples from the Boston Lead Study. Environ Res 38(1):119–129PubMedCrossRefGoogle Scholar
  10. 10.
    Dietrich KN, Krafft KM, Bornschein RL, Hammond PB, Berger O, Succop PA, Bier M (1987) Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics 80(5):721–730PubMedGoogle Scholar
  11. 11.
    Ernhart CB, Morrow-Tlucak M, Marler MR, Wolf AW (1987) Low level lead exposure in the prenatal and early preschool periods: early preschool development. Neurotoxicol Teratol 9(3):259–270PubMedCrossRefGoogle Scholar
  12. 12.
    Cooney GH, Bell A, McBride W, Carter C (1989) Neurobehavioural consequences of prenatal low level exposures to lead. Neurotoxicol Teratol 11(2):95–104PubMedCrossRefGoogle Scholar
  13. 13.
    McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ (1988) Port Pirie Cohort Study: environmental exposure to lead and children’s abilities at the age of four years. N Engl J Med 319(8):468–475. doi:10.1056/nejm198808253190803 PubMedCrossRefGoogle Scholar
  14. 14.
    Tofail F, Vahter M, Hamadani JD, Nermell B, Huda SN, Yunus M, Rahman M, Grantham-McGregor SM (2009) Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117(2):288–293. doi:10.1289/ehp.11670 PubMedGoogle Scholar
  15. 15.
    Kirksey A, Rahmanifar A, Wachs TD, McCabe GP, Bassily NS, Bishry Z, Galal OM, Harrison GG, Jerome NW (1991) Determinants of pregnancy outcome and newborn behavior of a semirural Egyptian population. Am J Clin Nutr 54(4):657–667PubMedGoogle Scholar
  16. 16.
    Friel JK, Andrews WL, Matthew JD, Long DR, Cornel AM, Cox M, McKim E, Zerbe GO (1993) Zinc supplementation in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr 17(1):97–104PubMedCrossRefGoogle Scholar
  17. 17.
    Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera FA, Icaza G (2001) Effect of zinc supplementation on development and growth of Chilean infants. J Pediatr 138(2):229–235PubMedCrossRefGoogle Scholar
  18. 18.
    Buchet JP, Roels H, Hubermont G, Lauwerys R (1978) Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. II. Influence of some epidemiological factors on the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ Res 15(3):494–503PubMedCrossRefGoogle Scholar
  19. 19.
    Conroy LM, Menezes-Lindsay RM, Sullivan PM, Cali S, Forst L (1996) Lead, chromium, and cadmium exposure during abrasive blasting. Arch Environ Health 51(2):95–99PubMedCrossRefGoogle Scholar
  20. 20.
    Iijima K, Otake T, Yoshinaga J, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, Yasumizu T, Kato N (2007) Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res 119(1):10–18. doi:10.1007/s12011-007-0057-1 PubMedCrossRefGoogle Scholar
  21. 21.
    Tsuchiya H, Mitani K, Kodama K, Nakata T (1984) Placental transfer of heavy metals in normal pregnant Japanese women. Arch Environ Health 39(1):11–17PubMedGoogle Scholar
  22. 22.
    Al-Saleh I, Shinwari N, Nester M, Mashhour A, Moncari L, El Din Mohamed G, Rabah A (2008) Longitudinal study of prenatal and postnatal lead exposure and early cognitive development in Al-Kharj, Saudi Arabia: a preliminary results of cord blood lead levels. J Trop Pediatr 54(5):300–307. doi:10.1093/tropej/fmn019 PubMedCrossRefGoogle Scholar
  23. 23.
    Ataniyazova OA, Baumann RA, Liem AK, Mukhopadhyay UA, Vogelaar EF, Boersma ER (2001) Levels of certain metals, organochlorine pesticides and dioxins in cord blood, maternal blood, human milk and some commonly used nutrients in the surroundings of the Aral Sea (Karakalpakstan, Republic of Uzbekistan). Acta Paediatr 90(7):801–808PubMedCrossRefGoogle Scholar
  24. 24.
    Guan H, Piao FY, Li XW, Li QJ, Xu L, Yokoyama K (2010) Maternal and fetal exposure to four carcinogenic environmental metals. Biomed Environ Sci 23(6):458–465. doi:10.1016/S0895-3988(11)60008-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Raghunath R, Tripathi RM, Sastry VN, Krishnamoorthy TM (2000) Heavy metals in maternal and cord blood. Sci Total Environ 250(1–3):135–141PubMedCrossRefGoogle Scholar
  26. 26.
    Senanayake MP (2004) The air we breathe: is it safe for children? Sri Lanka J Child Health 33(3):64–72Google Scholar
  27. 27.
    Vigeh M, Yokoyama K, Ramezanzadeh F, Dahaghin M, Sakai T, Morita Y, Kitamura F, Sato H, Kobayashi Y (2006) Lead and other trace metals in preeclampsia: a case–control study in Tehran, Iran. Environ Res 100(2):268–275. doi:10.1016/j.envres.2005.05.005 PubMedCrossRefGoogle Scholar
  28. 28.
    Yapici G, Can G, Kiziler AR, Aydemir B, Timur IH, Kaypmaz A (2006) Lead and cadmium exposure in children living around a coal-mining area in Yatagan, Turkey. Toxicol Ind Health 22(8):357–362PubMedGoogle Scholar
  29. 29.
    Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ Monit Assess 142(1–3):269–278. doi:10.1007/s10661-007-9924-7 PubMedCrossRefGoogle Scholar
  30. 30.
    Ujang Z, Buckley C (2002) Water and wastewater in developing countries: present reality and strategy for the future. Water Sci Technol 46(9):1–9PubMedGoogle Scholar
  31. 31.
    Olade MA (1987) Heavy metal pollution and the need for monitoring: illustrated for developing countries in West Africa. In: Hutchinson T, Meema K (eds) In lead, mercury, cadmium and arsenic in the environment. SCOPE. Wiley: New York. pp 335–341Google Scholar
  32. 32.
    SHRESTHA, #160, D. H (2003) Heavy metals pollution in the environment of Kathmandu. EDP sciences, Les Ulis, FranceGoogle Scholar
  33. 33.
    Pokhrel D, Bhandari BS, Viraraghavan T (2009) Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options. Environ Int 35(1):157–161. doi:10.1016/j.envint.2008.06.003 PubMedCrossRefGoogle Scholar
  34. 34.
    Maharjan M, Watanabe C, Ahmad SA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg 73(2):477–479PubMedGoogle Scholar
  35. 35.
    Alloway BJ (1990) Heavy metals in soils. Wiley, New YorkGoogle Scholar
  36. 36.
    Andersen P (2007) A review of micronutrient problems in the cultivated soil of Nepal. Mt Res Dev 27(4):331–335. doi:10.1659/mrd.0915 CrossRefGoogle Scholar
  37. 37.
    Christian P, Jiang T, Khatry SK, LeClerq SC, Shrestha SR, West KP Jr (2006) Antenatal supplementation with micronutrients and biochemical indicators of status and subclinical infection in rural Nepal. Am J Clin Nutr 83(4):788–794PubMedGoogle Scholar
  38. 38.
    Awasthi S, Awasthi R, Pande VK, Srivastav RC, Frumkin H (1996) Blood lead in pregnant women in the urban slums of Lucknow, India. Occup Environ Med 53(12):836–840PubMedCrossRefGoogle Scholar
  39. 39.
    Liu J, McCauley L, Compher C, Yan C, Shen X, Needleman H, Pinto-Martin JA (2011) Regular breakfast and blood lead levels among preschool children. Environ Health 10(1):28. doi:10.1186/1476-069x-10-28 PubMedCrossRefGoogle Scholar
  40. 40.
    Aydemir F, Cavdar AO, Soylemez F, Cengiz B (2003) Plasma zinc levels during pregnancy and its relationship to maternal and neonatal characteristics: a longitudinal study. Biol Trace Elem Res 91(3):193–202. doi:10.1385/bter:91:3:193 PubMedCrossRefGoogle Scholar
  41. 41.
    Patel AB, Williams SV, Frumkin H, Kondawar VK, Glick H, Ganju AK (2001) Blood lead in children and its determinants in Nagpur, India. Int J Occup Environ Health 7(2):119–126PubMedGoogle Scholar
  42. 42.
    Baghurst PA, Tong S, Sawyer MG, Burns J, McMichael AJ (1999) Sociodemographic and behavioural determinants of blood lead concentrations in children aged 11-13 years. The Port Pirie Cohort Study. Med J Aust 170(2):63–67PubMedGoogle Scholar
  43. 43.
    Patel AB, Prabhu AS (2009) Determinants of lead level in umbilical cord blood. Indian Pediatr 46(9):791–793PubMedGoogle Scholar
  44. 44.
    Hwang YH, Ko Y, Chiang CD, Hsu SP, Lee YH, Yu CH, Chiou CH, Wang JD, Chuang HY (2004) Transition of cord blood lead level, 1985–2002, in the Taipei area and its determinants after the cease of leaded gasoline use. Environ Res 96(3):274–282. doi:10.1016/j.envres.2004.02.002 PubMedCrossRefGoogle Scholar
  45. 45.
    Janjua NZ, Delzell E, Larson RR, Meleth S, Kabagambe EK, Kristensen S, Sathiakumar N (2008) Maternal nutritional status during pregnancy and surma use determine cord lead levels in Karachi, Pakistan. Environ Res 108(1):69–79. doi:10.1016/j.envres.2008.06.004 PubMedCrossRefGoogle Scholar
  46. 46.
    Central Bureau of Statistics (2004) Nepal living standards survey. vol 2. Government of Nepal, KathmanduGoogle Scholar
  47. 47.
    Central Bureau of Statistics (2008) National population census, 2001. Caste ethnicity population of Nepal. Government of Nepal, ThapathaliGoogle Scholar
  48. 48.
    Lin YY, Leon Guo YL, Chen PC, Liu JH, Wu HC, Hwang YH (2011) Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan. Environ Res 111(2):260–265. doi:10.1016/j.envres.2011.01.001 PubMedCrossRefGoogle Scholar
  49. 49.
    Kile M, Wright R, Amarasiriwardena C, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani D (2009) Maternal and umbilical cord blood levels of arsenic, cadmium, manganese, and lead in rural Bangladesh. Epidemiology 20(6):S149–S150. doi:110.1097/1001.ede.0000362511.0000380361.bc CrossRefGoogle Scholar
  50. 50.
    Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, Zhang YL, Wang JX (2009) Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res 132(1–3):51–59. doi:10.1007/s12011-009-8391-0 PubMedCrossRefGoogle Scholar
  51. 51.
    Kirel B, Aksit MA, Bulut H (2005) Blood lead levels of maternal-cord pairs, children and adults who live in a central urban area in Turkey. Turk J Pediatr 47(2):125–131PubMedGoogle Scholar
  52. 52.
    Kolachi NF, Kazi TG, Afridi HI, Kazi N, Khan S, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Shah F, Jamali MK, Arain MB (2011) Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol Trace Elem Res 143(1):196–212. doi:10.1007/s12011-010-8879-7 PubMedCrossRefGoogle Scholar
  53. 53.
    Lin CM, Doyle P, Wang D, Hwang YH, Chen PC (2010) Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med. doi:10.1136/oem.2010.059758
  54. 54.
    Elizabeth KE, Krishnan V, Vijayakumar T (2008) Umbilical cord blood nutrients in low birth weight babies in relation to birth weight & gestational age. Indian J Med Res 128(2):128–133PubMedGoogle Scholar
  55. 55.
    Su M, Tian D, Li W, Zhao H, Li L, Tan W, Song H (2002) Analysis of iodine and selenium trace elements in umbilical cord blood in cretinous regions in northwest China in 1999. Environ Health Prev Med 7(1):19–21. doi:10.1007/BF02898062 PubMedCrossRefGoogle Scholar
  56. 56.
    Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA, Yunus M, Persson LA (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165(12):1389–1396. doi:10.1093/aje/kwm025 PubMedCrossRefGoogle Scholar
  57. 57.
    Rahman A, Vahter M, Ekstrom EC, Persson LA (2011) Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 119(5):719–724. doi:10.1289/ehp.1002265 PubMedCrossRefGoogle Scholar
  58. 58.
    Ahmad SA, Maharjan M, Watanabe C, Ohtsuka R (2004) Arsenicosis in two villages in Terai, lowland Nepal. Environ Sci 11(3):179–188PubMedGoogle Scholar
  59. 59.
    Maharjan M, Shrestha RR, Ahmad SA, Watanabe C, Ohtsuka R (2006) Prevalence of arsenicosis in terai, Nepal. J Health Popul Nutr 24(2):246–252PubMedGoogle Scholar
  60. 60.
    Maharjan M, Watanabe C, Ahmad SA, Umezaki M, Ohtsuka R (2007) Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61(5):389–394. doi:10.1136/jech.2005.045062 PubMedCrossRefGoogle Scholar
  61. 61.
    Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(1):185–200PubMedCrossRefGoogle Scholar
  62. 62.
    Shaikh ZA, Smith JC (1980) Metabolism of orally ingested cadmium in humans. Dev Toxicol Environ Sci 8:569–574PubMedGoogle Scholar
  63. 63.
    Mijal RS, Holzman CB (2010) Blood cadmium levels in women of childbearing age vary by race/ethnicity. Environ Res 110(5):505–512. doi:10.1016/j.envres.2010.02.007 PubMedCrossRefGoogle Scholar
  64. 64.
    Galicia-Garcia V, Rojas-Lopez M, Rojas R, Olaiz G, Rios C (1997) Cadmium levels in maternal, cord and newborn blood in Mexico City. Toxicol Lett 91(1):57–61PubMedCrossRefGoogle Scholar
  65. 65.
    Sakamoto M, Murata K, Kubota M, Nakai K, Satoh H (2010) Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. Ecotoxicol Environ Saf 73(1):1–6. doi:10.1016/j.ecoenv.2009.09.010 PubMedCrossRefGoogle Scholar
  66. 66.
    Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, Sarfraz RA, Sheikh HU, Kandhro GA, Shah AQ (2009) Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet 280(3):415–423. doi:10.1007/s00404-009-0955-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rajendra Prasad Parajuli
    • 1
    • 2
  • Takeo Fujiwara
    • 1
  • Masahiro Umezaki
    • 2
  • Hana Furusawa
    • 2
  • Ping Han Ser
    • 2
  • Chiho Watanabe
    • 2
  1. 1.Department of Social MedicineNational Research Institute for Child Health and DevelopmentSetagaya-kuJapan
  2. 2.Department of Human Ecology, Graduate School of MedicineUniversity of TokyoBunkyo-kuJapan

Personalised recommendations