Biological Trace Element Research

, Volume 145, Issue 1, pp 93–100 | Cite as

Assessing the Tolerance of Castor Bean to Cd and Pb for Phytoremediation Purposes

  • Enio Tarso de Souza CostaEmail author
  • Luiz Roberto Guimarães Guilherme
  • Évio Eduardo Chaves de Melo
  • Bruno Teixeira Ribeiro
  • Euzelina dos Santos B. Inácio
  • Eduardo da Costa Severiano
  • Valdemar Faquin
  • Beverley A. Hale


This study evaluated Cd and Pb accumulation by castor bean (Ricinus communis cv. Guarany) plants grown in nutrient solution, aiming to assess the plant’s ability and tolerance to grow in Cd- and Pb-contaminated solutions for phytoremediation purposes. The plants were grown in individual pots containing Hoagland and Arnon’s nutrient solution with increasing concentrations of Cd and Pb. The production of root and shoot dry matter and their contents of Cd, Pb, Ca, Mg, Cu, Fe, Mn, and Zn were evaluated in order to calculate the translocation and bioaccumulation factors, as well as toxicity of Cd and Pb. Cadmium caused severe symptoms of phytotoxicity in the plant’s root and shoot, but no adverse effect was observed for Pb. Castor bean is an appropriate plant to be used as indicator plant for Cd and tolerante for Pb in contaminated solution and it can be potentially used for phytoremediation of contaminated areas.


phytostabilization phytotoxicity heavy metal 



To CNPq, CAPES/PNPD and FAPEMIG for granting scholarships to the authors.


  1. 1.
    He ZL, Yang XE, Stoffela PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140PubMedCrossRefGoogle Scholar
  2. 2.
    Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    ATSDR (2007) CERCLA Priority List of Hazardous Substances, Agency for Toxic Substances and Disease Control [Online WWW], available URL: Accessed June 2011
  4. 4.
    Guilherme LRG, Marques JJ, Pierangeli MAP, Zuliani DQ, Campos ML, Marchi G (2005) Elementos-traço em solos e sistemas aquáticos. Tópicos em Ciência do Solo, Viçosa: Soc Bras Ci Solo 4:345–390Google Scholar
  5. 5.
    Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290CrossRefGoogle Scholar
  6. 6.
    Dahmani-Muller H, Oort FV, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238PubMedCrossRefGoogle Scholar
  7. 7.
    Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic. Microchem J 85:297–300CrossRefGoogle Scholar
  8. 8.
    Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311CrossRefGoogle Scholar
  9. 9.
    McBride MB (1994) Environmental chemistry of soils. University Press, New YorkGoogle Scholar
  10. 10.
    An YJ (2006) Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 62:1359–1365PubMedCrossRefGoogle Scholar
  11. 11.
    Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80PubMedCrossRefGoogle Scholar
  12. 12.
    Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2003) Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci 165:793–802CrossRefGoogle Scholar
  13. 13.
    Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447PubMedCrossRefGoogle Scholar
  14. 14.
    Niu Z, Sun L, Sun T, Li Y, Wang H (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci 19:961–967CrossRefGoogle Scholar
  15. 15.
    Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Botan 35:525–545CrossRefGoogle Scholar
  16. 16.
    Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  17. 17.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654PubMedCrossRefGoogle Scholar
  19. 19.
    Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by siam weed [Chromolaena odorata (L.) King and Robinson]. Chemosphere 68:323–329PubMedCrossRefGoogle Scholar
  20. 20.
    López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Botan 65:376–385CrossRefGoogle Scholar
  21. 21.
    Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWA (2009) Accumulation of arsenic and nutrients by castor bean plants gown on an As-enriched nutrient solution. J Hazard Mater 168:479–483PubMedCrossRefGoogle Scholar
  22. 22.
    Oliveira LB, Araujo MSM, Rosa LP, Barata M, La Rovere EL (2008) Analysis of the sustainability of using wastes in the Brazilian power industry. Renew Sustain Energy Rev 12:883–890CrossRefGoogle Scholar
  23. 23.
    Lu XY, He CQ (2005) Tolerance, uptake and accumulation of cadmium by Ricinus communis L. J Agro-Environ Sci 24:674–677Google Scholar
  24. 24.
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular, Berkeley, p 347Google Scholar
  25. 25.
    Gustaffson JP (2007) Visual Minteq, ver.2.53, Kungliga Tekniska högskolgn [Royal Institute of Technology], Department of Land and Water Resources Engineering, Stockholm [Online WWW], available URL: Accessed February 2011
  26. 26.
    Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Comunicação para Transferência de Tecnologia, BrasíliaGoogle Scholar
  27. 27.
    Wei C, Chen T (2006) Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63:1048–1053PubMedCrossRefGoogle Scholar
  28. 28.
    Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464PubMedCrossRefGoogle Scholar
  29. 29.
    January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537PubMedCrossRefGoogle Scholar
  30. 30.
    Sun Y, Zhou Q, Diao C, Liu W, An J, Xu Z, Wang L (2009) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023–1028PubMedCrossRefGoogle Scholar
  31. 31.
    An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26PubMedCrossRefGoogle Scholar
  32. 32.
    Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110PubMedCrossRefGoogle Scholar
  33. 33.
    Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371PubMedCrossRefGoogle Scholar
  34. 34.
    Ferreira DF (2009) Sisvar 5.1, Programa de Análises Estatísticas [Online WWW], available URL:∼danielff/softwares.htm. Accessed February 2011
  35. 35.
    Luo C, Shen Z, Lou L, Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871PubMedCrossRefGoogle Scholar
  36. 36.
    Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation 12:562–573PubMedCrossRefGoogle Scholar
  37. 37.
    Megateli S, Semsari S, Couderchet M (2009) Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 72:1774–1780PubMedCrossRefGoogle Scholar
  38. 38.
    Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Botan 60:219–226CrossRefGoogle Scholar
  39. 39.
    Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enio Tarso de Souza Costa
    • 1
    Email author
  • Luiz Roberto Guimarães Guilherme
    • 1
  • Évio Eduardo Chaves de Melo
    • 2
  • Bruno Teixeira Ribeiro
    • 3
  • Euzelina dos Santos B. Inácio
    • 4
  • Eduardo da Costa Severiano
    • 5
  • Valdemar Faquin
    • 1
  • Beverley A. Hale
    • 6
  1. 1.Department of Soil ScienceFederal University of LavrasLavrasBrazil
  2. 2.Department of Engineering and EnvironmentFederal University of ParaíbaRio TintoBrazil
  3. 3.Institute of Agricultural ScienceFederal University of UberlandiaUberlândiaBrasil
  4. 4.Center of Biological ScienceFederal University of PernambucoRecifeBrasil
  5. 5.Goiano Federal Institute of Education, Science, and TechnologyRio VerdeBrasil
  6. 6.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations