Biological Trace Element Research

, Volume 144, Issue 1–3, pp 496–503 | Cite as

Altered Serum Selenium and Uric Acid Levels and Dyslipidemia in Hemodialysis Patients Could be Associated with Enhanced Cardiovascular Risk

  • Loreto Martí del Moral
  • Ahmad Agil
  • Miguel Navarro-AlarcónEmail author
  • Herminia López-Ga de la Serrana
  • Magdalena Palomares-Bayo
  • María Jesús Oliveras-López


In the present study, the first objective was to follow up serum selenium (Se) concentrations in 117 hemodialysis patients (HPs) during a 2-year longitudinal study, relating concentrations to biochemical indexes (n = 6; namely lipoprotein profile, uric acid, and total protein levels). It was also evaluated whether the disease is associated with an enhanced cardiovascular risk. A healthy control group (n = 50) was also studied. Mean serum Se levels were significantly lower in HPs than in the controls (p = 0.002); mean levels significantly increased from the first to third blood sampling (p < 0.001). HPs showed a marked dyslipidemia, with a significant reduction in total cholesterol, low-density lipoprotein, and high-density lipoprotein cholesterol levels and a significant increase in triglyceride levels (p < 0.001). HPs showed a marked hyperuricemia (p < 0.001). Serum selenium levels in HPs were correlated negatively with uric acid levels (inflammation biomarker; p < 0.01). In HPs, serum Se levels are reduced due to their disease (chronic renal failure). Serum Se levels rose until the third blood sampling. The marked dyslipidemia and hyperuricemia found in HPs and the negative correlation between the serum Se and uric acid levels in these patients could imply an enhanced cardiovascular risk.


Hemodialysis patients Selenium Lipoprotein profile Uric acid Longitudinal study Cardiovascular risk 



The authors would like to thank all the volunteers for their participation. The study was supported by grant AGR-141 (Junta de Andalucía) Spain.


  1. 1.
    Berger MM, Shenkin A, Revelly JP et al (2004) Copper, selenium, zinc and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80:410–416PubMedGoogle Scholar
  2. 2.
    Borawska MH, Witkowska AM, Hutalowicz K et al (2007) Influence of dietary habits on serum selenium concentration. Ann Nutr Metabol 48:34–40Google Scholar
  3. 3.
    Zachara BA, Gromadzinska J, Wasowicz W et al (2006) Red blood cell in plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim Pol 53:663–677PubMedGoogle Scholar
  4. 4.
    Taccone-Gallucci M, Noce A, Bertucci P et al (2010) Chronic treatment with statins increases the availability of selenium in the antioxidant defence systems of hemodialysis patients. J Trace Elem Medic Biol 24:27–30CrossRefGoogle Scholar
  5. 5.
    Bober J, Kwiatkowska E, Kedzierska K et al (2007) Influence of glucose in the dialysate on the activity of erythrocyte-glutathione-peroxidase and blood selenium concentration in hemodialyzed patients. Arch Med Res 38:330–336PubMedCrossRefGoogle Scholar
  6. 6.
    Torra M, Casals G, Cervera C et al (2007) Selenium status in healthy subjects and patients with different stages of chronic renal failure living in Barcelona, Northeast Spain. Trace Elem Electrol 24:92–96Google Scholar
  7. 7.
    Ortac E, Ozkaya O, Saraymen R et al (2006) Low hair selenium and plasma glutathione peroxidase in children with chronic renal failure. Pediatr Nephrol 21:1739–1745PubMedCrossRefGoogle Scholar
  8. 8.
    Andrew NH, Engel B, Hart K et al (2008) Micronutrient intake in haemodialysis patients. J Hum Nutr Diet 21:375–378CrossRefGoogle Scholar
  9. 9.
    Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879PubMedCrossRefGoogle Scholar
  10. 10.
    Alimonda AL, Núñez J, Nuñez E et al (2009) Hyperuricemia in acute heart failure. More than a simple spectator? Eur J Int Med 20:74–79CrossRefGoogle Scholar
  11. 11.
    Leyva F, Anker S, Swan JW et al (1997) Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J 18:858–865PubMedCrossRefGoogle Scholar
  12. 12.
    Leyva F, Anker SD, Godsland IF et al (1998) Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J 19:1814–1822PubMedCrossRefGoogle Scholar
  13. 13.
    Hoeper MM, Hohfeld JM, Fabel H (1999) Hyperuricaemia in patients with right or left heart failure. Eur Respir J 13:682–685PubMedCrossRefGoogle Scholar
  14. 14.
    Culleton BF, Larson MG, Kannel WB et al (1999) Serum uric acid and risk for cardiovascular disease and death: the Framinghan Heart Study. Ann Intern Med 131:7–13PubMedGoogle Scholar
  15. 15.
    Niskanen LK, Laaksonen DE, Nyyssonen K et al (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 164:1546–1551PubMedCrossRefGoogle Scholar
  16. 16.
    Yeum KJ, Beretta G, Krinsky NI et al (2009) Synergistic interactions of antioxidant nutrients in a biological model system. Nutrition 25:839–846PubMedCrossRefGoogle Scholar
  17. 17.
    Szeto YT, Timothy CY, Kowk TCY et al (2004) Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition 20:863–866PubMedCrossRefGoogle Scholar
  18. 18.
    Castilla P, Echarri R, Dávalos A et al (2006) Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 84:252–262PubMedGoogle Scholar
  19. 19.
    Jackson P, Lougherey CM, Lightbody JH et al (1995) Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure. Clin Chem 41:1135–1138PubMedGoogle Scholar
  20. 20.
    Navarro-Alarcón M, López-Gª de la Serrana H, Pérez-Valero V et al (1999) Serum and urine selenium concentrations in patients with cardiovascular diseases and relationship to other nutritional and biochemical indexes. Ann Nutr Metab 43:30–36PubMedCrossRefGoogle Scholar
  21. 21.
    Navarro-Alarcon M, López-Gª de la Serrana H, Pérez-Valero V et al (2002) Selenium concentration in serum of individuals with liver diseases (cirrhosis or hepatitis): relationship with some nutritional and biochemical markers. Sci Total Environ 291:135–141PubMedCrossRefGoogle Scholar
  22. 22.
    Martínez-Peinado M, Nogueras-López F, Arcos-Cebrián A et al (2010) Serum selenium levels in cirrhotic patients are not influenced by the disease severity index. Nutr Res 30:574–578PubMedCrossRefGoogle Scholar
  23. 23.
    Hesieh YY, Shen WS, Lee LY et al (2006) Long-term changes in trace elements in patients undergoing chronic hemodialysis. Biol Trace Elem Res 109:115–121CrossRefGoogle Scholar
  24. 24.
    Yilmaz MI, Saglam M, Caglar K et al (2006) Pathogenesis and treatment of kidney disease and hypertension—the determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am J Kidney Dis 47:42–50PubMedCrossRefGoogle Scholar
  25. 25.
    Chen B, Lamberts LV, Behets GH et al (2009) Selenium, lead, and cadmium levels in renal failure patients in China. Biol Trace Elem Res 131:1–12PubMedCrossRefGoogle Scholar
  26. 26.
    Pakfetrat M, Malekmakan L, Hasheminasab M (2010) Diminished selenium levels in hemodialysis and continuous ambulatory peritoneal dialysis patients. Biol Trace Elem Res 137:335–339PubMedCrossRefGoogle Scholar
  27. 27.
    Fujishima Y, Ohsawa M, Itai K et al (2011) Serum selenium levels in hemodialysis patients are significantly lower than those in healthy controls. Blood Purific 32:43–47CrossRefGoogle Scholar
  28. 28.
    Salgueiro MJ, Bocio JR (2001) Nutritional care in renal disease patients. Nutrition 17:157PubMedCrossRefGoogle Scholar
  29. 29.
    Zagrodzki P, Barton H, Walas S et al (2007) Selenium status indices, laboratory data, and selected biochemical parameters in end-stage renal disease patients. Biol Trace Elem Res 116:29–41PubMedCrossRefGoogle Scholar
  30. 30.
    Martins C (2004) Vitaminas y oligoelementos en la insuficiencia renal. In: Riella MC, Martins C (eds) Nutrición y riñón. Editorial Médica Panamericana, Madrid, pp 46–62Google Scholar
  31. 31.
    Zwolinska D, Grzeszczak W, Kilis-Pstrusinska K et al (2004) Lipid peroxidation and antioxidant enzymes in children with chronic renal failure. Pediatr Nephrol 19:888–892PubMedCrossRefGoogle Scholar
  32. 32.
    Zachara BA, Wlodarczyk Z, Andruszkiewicz J et al (2005) Glutathione and glutathione peroxidase activities in blood of patients in early stages following kidney transplantation. Ren Fail 27:751–755PubMedCrossRefGoogle Scholar
  33. 33.
    Navarro-Alarcón M, Cabrera-Vique C (2008) Selenium in food and human body: a review. Sci Total Environ 400:115–141PubMedCrossRefGoogle Scholar
  34. 34.
    Sigolo Teixeira P, Riella MC (2004) Metabolismo de las proteínas, de los hidratos de carbono y de los lípidos en la insuficiencia renal. In: Riella MC, Martins C (eds) Nutrición y Riñón. Editorial Médica Panamericana, Madrid, pp 12–27Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Loreto Martí del Moral
    • 1
  • Ahmad Agil
    • 2
  • Miguel Navarro-Alarcón
    • 1
    Email author
  • Herminia López-Ga de la Serrana
    • 1
  • Magdalena Palomares-Bayo
    • 3
  • María Jesús Oliveras-López
    • 1
  1. 1.Department of Nutrition and Food Chemistry, Faculty of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Institute of Neurosciences, Department of Pharmacology, School of MedicineUniversity of GranadaGranadaSpain
  3. 3.Hemodialysis DepartmentGuadix HospitalGranadaSpain

Personalised recommendations