Advertisement

Biological Trace Element Research

, Volume 144, Issue 1–3, pp 1370–1380 | Cite as

Nutrients and Trace Elements Content of Wood Decay Fungi Isolated from Oak (Quercus ilex)

  • Juan A. Campos
Article

Abstract

The presence of chemical elements and the differences in their concentration in the fruiting bodies of wood decay fungi may reflect their activity either as saprobes or parasites and the intimate physiological relation with the substrate from which they extract their nutrients. In order to test this hypothesis, we carried out a systematic sampling of eight species of wood decay fungi on oak (Quercus ilex). The data show that the concentration of some elements exhibits a very wide range of values for the species tested, which could mean that the relative content of some elements may provide clues about the nature of the substrate and, moreover, about the nutritional physiology. The comparison between the foliar analysis (FA) and the elemental content of fungi may shed light on the specific physiological behaviour of the species. Potassium is an element accumulated in fungal biomass in higher quantities than in the FA. By contrast, calcium appears in foliar analysis in much higher quantities than in fungal fruiting bodies’ biomass. Concerning this element, we have also found profound differences between the two species phylogenetic groups and lifestyle. Of all elements measured, we believe that the relative accumulation of K and Ca may be related to the close connection between fungi and the substrate on which they live and may also explain their physiological role as saprobes or parasites. When the lifestyle and the systematic position of the different species sampled were compared, differences also emerged in the content of Na and Ca.

Keywords

Epiphytic fungi Saprobe fungi Nutrition physiology Nutrients Trace elements Heavy metals 

Notes

Acknowledgements

I would like to thank Jose Angel de Toro from IRICA-UCLM for the careful revision of the manuscript, Joann Whalen and Heather McShane, from McGill University (Montreal, Canada), for their accurate and precise comments and Francisco de Diego Calonge from Real Jardín Botánico (CSIC, Madrid), Armando Guerra and Domingo Cózar for their invaluable assistance in the collection and identification of fungal species.

References

  1. 1.
    Dighton J (1997) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Wicklow DT, Soderström B (eds) The Mycota, vol V. Springer, Berlin, pp 271–279Google Scholar
  2. 2.
    Boddy L (1992) Development and function of fungal communities in decomposing wood. In: Carroll GC, Wicklow DT (eds) The fungal community—its organization and role in the ecosystem, 2nd edn. Marcel Dekker, New York, pp 749–782Google Scholar
  3. 3.
    Zak JC, Rabatin SC (1997) Organization and description of fungal communities. In: Wicklow DT, Söderström B (eds) The Mycota, vol IV, Environ Microb Realatsh. Springer, Berlin, pp 33–46Google Scholar
  4. 4.
    Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20PubMedCrossRefGoogle Scholar
  5. 5.
    White NA (2004) The importance of wood-decay fungi in forest ecosystems. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Alfredsen G, Solheim H, Slimestad R (2008) Antifungal effect of bark extracts from some European tree species. Eur J Forest Res 127:387–393CrossRefGoogle Scholar
  7. 7.
    Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963CrossRefGoogle Scholar
  8. 8.
    Matheny PB, Curtis JM, Hofstetter V et al (2007) Major clades of Agaricales: a multi-locus phylogenetic overview. Mycologia 98:984–997Google Scholar
  9. 9.
    Paoleti E, Günthardt-Goerg MS (2006) Growth responses and element content of Quercus pubescens seedlings under acidic and heavy metal contamination. For Snow Landsc Res 80:323–337Google Scholar
  10. 10.
    Robert B, Bertoni G, Sayag D, Masson P (1996) Assessment of mineral nutrition of cork oak through foliar analysis. Common Soil Sci Plant Anal 27:2091–2109CrossRefGoogle Scholar
  11. 11.
    Mino Y, Yukita M (2005) Detection of high levels of bromine in vegetables using X-ray fluorescence spectrometry. J Health Sci 51:365–368CrossRefGoogle Scholar
  12. 12.
    Valdecantos A, Cortina J, Vallejo VR (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256CrossRefGoogle Scholar
  13. 13.
    Calonge FD, Moreno G, et al. (2008) Flora Micológica de Castilla La Mancha. Situación actual y conservación de los hongos del bosque. Memoria Final (2004–2007) Hernandez-Crespo Ed. Real Jardín Botánico CSIC, MadridGoogle Scholar
  14. 14.
    Kalac P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16CrossRefGoogle Scholar
  15. 15.
    Lamrood PY, Mungikar RR (2007) Analysis of element contents in selected medicinal Phellinus Quél. (Aphyllophoromycetidae) species from India. Int J Med Mushrooms 9:379–384CrossRefGoogle Scholar
  16. 16.
    Soylak M, Saraçglu S et al (2005) Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem 92:649–652CrossRefGoogle Scholar
  17. 17.
    Alonso J, García MA, Pérez-López M, Melgar MJ (2004) Acumulación de metales pesados en macromicetos comestibles y factores que influyen en su captación. Rev Toxicol 21:11–15Google Scholar
  18. 18.
    Mendil D, Uluözlü OD et al (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem 88:281–285CrossRefGoogle Scholar
  19. 19.
    Mendil D, Uluözlü DO et al (2005) Trace metal levels in mushroom samples from Ordu, Turkey. Food Chem 91:463–467CrossRefGoogle Scholar
  20. 20.
    Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mat 160:462–467CrossRefGoogle Scholar
  21. 21.
    Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810CrossRefGoogle Scholar
  22. 22.
    Arriagada C, Aranda E, Sampedro I et al (2009) Interaction of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere 77:273–278PubMedCrossRefGoogle Scholar
  23. 23.
    Martin A, Conti C, Gobbi C (1997) Sorption of lead and caesium by mushrooms grown in natural conditions. Res Environ Biotech 2:35–49Google Scholar
  24. 24.
    Cipáková A (2004) 137Cs content in mushrooms from localities in eastern of Slovakia. Nukleonika 49:S25–S29Google Scholar
  25. 25.
    Bazala MA, Bystrzejewska-Piotrovska G, Cipáková A (2005) Bioaccumulation of 137Cs in wild mushrooms collected in Poland and Slovakia. Nukleonika 50:S15–S18Google Scholar
  26. 26.
    Latiff LA, Mohd-Daran AB, Mohamed AB (1996) Relative distribution of minerals in the pileus and stalk of some selected edible mushrooms. Food Chem 56:115–121CrossRefGoogle Scholar
  27. 27.
    Kalac P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35CrossRefGoogle Scholar
  28. 28.
    Vetter J (2005) Mineral composition of basidiomes of Amanita species. Micol Res 109:746–750CrossRefGoogle Scholar
  29. 29.
    Campos JA, Tejera N, Sánchez C (2009) Substrate role in the acumulation of heavy metals in sporocarps of wild fungi. Biometals 22:835–841PubMedCrossRefGoogle Scholar
  30. 30.
    Falandysz J, Kunito T, Kubota R et al (2008) Some mineral constituents of Parasol Mushroom (Macrolepiota procera). J Environ Sci Health B 43:187–192PubMedCrossRefGoogle Scholar
  31. 31.
    Campos JA, Tejera NA (2011) Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res. doi: 10.1007/s12011-010-8853-4
  32. 32.
    García MA, Alonso J, Melgar MJ (2005) Agaricus macrosporus as a potencial bioremediation agent for substrates contaminated with heavy metals. J Chem Tech Biotech 80:325–330CrossRefGoogle Scholar
  33. 33.
    Blanusa M, Kucak A et al (2001) Uptake of cadmium, coper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soils. J AOAC Int 84:1964–1971PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Producción Vegetal y Tecnología AgrariaUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations