Biological Trace Element Research

, Volume 143, Issue 3, pp 1682–1694 | Cite as

Aqueous Synthesis and Concentration-Dependent Dermal Toxicity of TiO2 Nanoparticles in Wistar Rats

  • Jyotisree Unnithan
  • Muneeb U. Rehman
  • Farhan J. Ahmad
  • M. Samim
Article

Abstract

A number of dermal toxicological studies using TiO2 nanoparticles exist which are based on the study of various animal models like mice, rabbits etc. However, a well-defined study is lacking on the dermal toxic effects of TiO2 nanoparticles on rats, which are the appropriate model for systemic absorption study of nanoparticles. Furthermore, toxicity of TiO2 nanoparticles varies widely depending upon the size, concentration, crystallinity, synthesis method etc. This study was conducted to synthesize TiO2 nanoparticles of different sizes (∼15 to ∼30 nm) by aqueous method, thereby evaluating the concentration-dependent toxicological effects of the ∼20-nm sized nanoparticles on Wistar rats. Characterization of the particles was done by transmission electron microscope, dynamic light scattering instrument, X-ray diffractrometer, and ultraviolet spectrophotometer. The toxicity study was conducted for 14 days (acute), and it is observed that TiO2 nanoparticles (∼20 nm) at a concentration of 42 mg/kg, when applied topically showed toxicity on rat skin at the biochemical level. However, the histopathological studies did not show any observable effects at tissue level. Our data suggest that well-crystallized spherical-shaped ∼20 nm anatase TiO2 nanoparticles synthesized in aqueous medium can induce concentration-dependent biochemical alteration in rat skin during short-term exposure.

Keywords

TiO2 nanoparticles Acute toxicity Topical application Wistar rat Characterization 

References

  1. 1.
    Bernard BK, Osheroff MR, Hofmann A et al (1990) Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female fischer 344 rats. J Toxicol Environ Health 29(4):417–429PubMedCrossRefGoogle Scholar
  2. 2.
    Hurum DC, Agrios AG, Gray KA (2003) Explaining the enhanced photocatalyt activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem 107:4545–4549CrossRefGoogle Scholar
  3. 3.
    Hurum DC, Gray KA (2005) Recombination pathways in the degussa P2 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem 109:977–980CrossRefGoogle Scholar
  4. 4.
    Cho M, Chung H, Choi W et al (2004) Linear correlation between inactivation of e coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38(4):1069–1077PubMedCrossRefGoogle Scholar
  5. 5.
    Ackroyd R, Kelty C, Brown N et al (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669PubMedCrossRefGoogle Scholar
  6. 6.
    Davis JM, Wang A, Shatkin JA et al. (2009) External review draft nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. US Environmental Protection Agency, Research Triangle Park. pp 5–31Google Scholar
  7. 7.
    Borm PJ, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Particle Fibre Toxicol 3:11CrossRefGoogle Scholar
  8. 8.
    Ne A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  9. 9.
    Wang JX, Zhou GQ, Chen CY et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185PubMedCrossRefGoogle Scholar
  10. 10.
    Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247PubMedCrossRefGoogle Scholar
  11. 11.
    Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530CrossRefGoogle Scholar
  12. 12.
    Oberdoerster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  13. 13.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  14. 14.
    Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231PubMedCrossRefGoogle Scholar
  15. 15.
    Chen HW, Su SF, Chien CT et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:1732–1741Google Scholar
  16. 16.
    Liu HT, Ma LL, Zhao JF et al (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129(1):170–180PubMedCrossRefGoogle Scholar
  17. 17.
    Ma LL, Zhao JF, Wang J et al (2009) The acute liver injury in mice caused by nano-anatase TiO2. Nanoscale Res Lett 4:1275–2128PubMedCrossRefGoogle Scholar
  18. 18.
    Duan YM, Liu J, Ma LL et al (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31:894–899PubMedCrossRefGoogle Scholar
  19. 19.
    Cui Y, Liu H, Zhou M et al (2010) Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res A 96(1):221–229. doi:10.1002/jbm.a.32976 PubMedGoogle Scholar
  20. 20.
    Afaq F, Abidi P, Matin R et al (1998) Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 18:307–312PubMedCrossRefGoogle Scholar
  21. 21.
    Warheit DB, Webb TR, Reeda KL et al (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104PubMedCrossRefGoogle Scholar
  22. 22.
    Warheit DB, Hoke RA, Finlay C et al (2007) Development of a base of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110PubMedCrossRefGoogle Scholar
  23. 23.
    Liu R, Yin LH, Pu YP et al (2009) Pulmonary toxicity induced by three forms of titanium dioxide nanoparticles via intra-tracheal instillation in rats. Prog Nat Sci 19(5):573–579CrossRefGoogle Scholar
  24. 24.
    Wang J, Li N, Zheng L et al (2011) P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol Trace Elem Res, doi: 10.1007/s12011-010-8663-8.
  25. 25.
    Gamer AO, Leibold E, Van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307PubMedCrossRefGoogle Scholar
  26. 26.
    Kiss B, Biro T, Czifra G et al (2008) Investigation ofmicronized titanium dioxide penetration in human skin xeno-grafts and its effect on cellular functions of human skin-derived cells. Exp Dermatol. doi:10.1111/j.1600-0625.2007.00683 PubMedGoogle Scholar
  27. 27.
    NANODERM (2007) Quality of skin as a barrier to ultra-fine particles. Final Report. (Project Number: QLK4-CT-2002-02678). Available at: http://www.uni-leipzig.de/*nanoderm/
  28. 28.
    Menzel F, Reinert T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res B 219–220:82–86CrossRefGoogle Scholar
  29. 29.
    Kertesz ZS, Szikszai Z, Gontier E et al (2005) Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instrum Methods Phys Res B 231:280–285CrossRefGoogle Scholar
  30. 30.
    Bennat C, Muller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22:271–283PubMedCrossRefGoogle Scholar
  31. 31.
    Habig WH, Pabst MJ, Jokoby WB (1974) Glutathione-S-transferase—the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  32. 32.
    Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen free radical research. CRC Press, Boca Raton, pp 283–284Google Scholar
  33. 33.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  34. 34.
    Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304PubMedCrossRefGoogle Scholar
  35. 35.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  36. 36.
    Newman MD, Stotland M, Ellis J (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61:685–692PubMedCrossRefGoogle Scholar
  37. 37.
    Shayne CG (2006) Animal models in toxicology, 2nd edn. Taylor & Francis, New York, p 177Google Scholar
  38. 38.
    Warheit DB, Hoke RA, Finlay C et al (2006) CM Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236PubMedCrossRefGoogle Scholar
  39. 39.
    Domingos RF, Tufenkji N, Wilkinson KJ et al (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286PubMedCrossRefGoogle Scholar
  40. 40.
    French RA, Jacobson AR, Kim B et al (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359PubMedCrossRefGoogle Scholar
  41. 41.
    Jemec A, Drobne D, Remskar M et al (2008) T Effects of ingested nanosized titanium dioxide on terrestrial isopods porcellio scaber. Environ Toxicol Chem 27:1904–1914PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jyotisree Unnithan
    • 1
  • Muneeb U. Rehman
    • 3
  • Farhan J. Ahmad
    • 1
  • M. Samim
    • 2
  1. 1.Nanosynthesis Lab, Faculty of Engineering and Interdisciplinary SciencesJamia Hamdard (Hamdard University)New DelhiIndia
  2. 2.Department of Chemistry, Faculty of ScienceJamia Hamdard (Hamdard University)New DelhiIndia
  3. 3.Faculty of ScienceJamia Hamdard (Hamdard University)New DelhiIndia

Personalised recommendations