Biological Trace Element Research

, Volume 143, Issue 3, pp 1594–1606 | Cite as

Effect of Mineral Fortification on Plasma Biochemical Profile in Rats

  • Saeed AkhtarEmail author
  • Faqir M. Anjum
  • Zia Ur Rehman
  • Munammad Tauseef Sultan
  • Muhammad Riaz
  • Anwaar Ahmed


This study aimed at investigating the changes in biochemical profile of male rats following 8 weeks administration of different concentration of elemental iron, sodium iron ethylenediaminetetraacetate (NaFeEDTA), zinc sulfate (ZnSO4), and zinc oxide (ZnO) in whole wheat flour. Eight groups comprising five rats each were fed fortified whole wheat flour in the form of baked pallets, while one group served as control. Concentration of total cholesterol, high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), triglycerides, total proteins, albumin, globulin, plasma glucose, and blood urea nitrogen were assayed. Supplementing mineral-fortified diet to male rats did not indicate any significant (p ≤ 0.05) effect on total cholesterol concentration. Diets containing NaFeEDTA alone increased HDL-C and decreased LDL-C; however, the differences remained non significant. Likewise, plasma triglycerides content of male rats remained unchanged on feeding fortified diets. Diets containing iron as NaFeEDTA and elemental iron exerted little effect on total protein concentration in the plasma of rats. Plasma glucose and blood urea nitrogen levels did not exhibit any significant change as a result of ingesting mineral supplemented diets. The study concludes that the forms of fortificants and the fortification levels used in the current study are undamaging for lipid profile, renal function, and glucose levels in rats, suggesting that these may be safely used in wheat flour to combat iron and zinc deficiency in vulnerable groups.


Mineral Fortification Flour Biochemical profile Rats 



The authors highly appreciate the Higher Education Commission of Pakistan for financial support to conduct this research.

Conflict of Interest

We the authors declare that there is not any kind of conflict among them including financial support or relationships regarding the publication of this manuscript.


  1. 1.
    Ranum P (1999) Zinc enrichment of cereal staples. Food Nutr Bull 22:9–12Google Scholar
  2. 2.
    Prasad AS (2003) Zinc deficiency. Br Med J 326:409–410CrossRefGoogle Scholar
  3. 3.
    Maberly G, Grummer-Strawn L, Jefferds ME, Pena-Rosas JP, Serdula MK, Tyler VQ, Berry RJ, Mulinare PI, Aburto NJ (2008) Trends in wheat-flour fortification with folic acid and iron worldwide: 2004 and 2007. Morbid Mortal Week Rep 57:8–10Google Scholar
  4. 4.
    Akhtar S, Anjum FM, Rehman SU, Munir AS (2009) Effect of mineral fortification on rheological properties of whole wheat flour. J Texture Stud 40:51–65CrossRefGoogle Scholar
  5. 5.
    Akhtar S, Anjum FM, Rehman SU, Munir AS, Farzana K (2008) Effect of fortification on physico-chemical and microbiological stability of whole wheat flour. Food Chem 110:113–119CrossRefGoogle Scholar
  6. 6.
    Meira F, Charles GL (1997) Hepatic iron overload may contribute to hypertrigly-ceridemia and hypercholesterolemia in copper-deficient rats. Metabolism 46:377–381CrossRefGoogle Scholar
  7. 7.
    Pachotikarn C, Madeiros DM, Windham F (1985) Effect of oral zinc supplementation upon plasma lipids, blood pressure, and other variables in young adult white males. Nutr Rep Inter 32:373–382Google Scholar
  8. 8.
    Black MR, Medeiros DM, Brunett E, Welke R (1988) Zinc supplements and serum lipids in young adult white males. Am J Clin Nutr 47:970–975PubMedGoogle Scholar
  9. 9.
    El Hendy HA, Yousef MI, Abo El-Naga NI (2001) Effect of dietary zinc deficiency on hematological and parameters and concentration of zinc, copper, and iron in growing rats. Toxicology 167:163–170PubMedCrossRefGoogle Scholar
  10. 10.
    Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition adhoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1239–1251Google Scholar
  11. 11.
    AOAC (2000) Official methods of analysis, 17th edn. The Association of the Official Analytical Chemists, ArlingtonGoogle Scholar
  12. 12.
    Levrat-Verny MA, Coudray C, Bellanger J, Lopez HW, Demigne C, Rayssiguier Y, Remesy C (1999) Whole wheat flour ensures higher mineral absorption and bioavailability than white wheat flour in rats. Br J Nutr 82:17–21PubMedGoogle Scholar
  13. 13.
    Annoni G, Botasso BM, Ciaci D, Donato MF, Tripodi A (1982) Liquid triglycerides (GPO-PAP). J Res Lab Med 9:115Google Scholar
  14. 14.
    Allain CC, Poon LS, Chan CS (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475PubMedGoogle Scholar
  15. 15.
    Assmann G (1979) HDL-cholesterol precipitant. Randox Labs. Ltd. Crumlin Co. Antrim, N. Ireland. Internist 20:559PubMedGoogle Scholar
  16. 16.
    McNamara JR, Cohn JS, Wilson PW, Schaefer EJ (1990) Calculated values for low-density lipoprotein cholesterol in the assessment of lipid abnormalities and coronary disease risk. Clin Chem 36:36–42PubMedGoogle Scholar
  17. 17.
    Josephson B, Gyllensward C (1957) The development of the protein fractions and of cholesterol concentration in the serum of normal infants and children. Scand J Clin Lab 9:29–38CrossRefGoogle Scholar
  18. 18.
    Webster D (1974) A study of the interaction of bromocresol green with isolated serum globulin fractions. Clin Chim Acta 53:109–115PubMedCrossRefGoogle Scholar
  19. 19.
    Thomas L, Labor U (1992) Enzymateischer kinetischer colorimetrischer test (GOD PAP).Biocon Diagnostik, Hecke 8, 34516 Vohl/Manenhagen. Germany Diagnose. 4:69Google Scholar
  20. 20.
    Steel R, Torrie J, Dickey D (1997) Principles and procedures of statistics. A biometrical approach, 3rd edn. McGraw Hill, New YorkGoogle Scholar
  21. 21.
    Duncan DB (1955) Multiple range and multiple F-test. Biometrics 11:42CrossRefGoogle Scholar
  22. 22.
    Fischer PW, Giroux A, Belonje B, Shah BG (1980) The effect of dietary copper and zinc on cholesterol metabolism. Am J Clin Nutr 33:1019–1025PubMedGoogle Scholar
  23. 23.
    Hermann J, Arquitt A, Hanson C (1993) Relationship between dietary minerals and plasma lipids and glucose among older adults. J Nutr Elder 12:1–14PubMedCrossRefGoogle Scholar
  24. 24.
    Hiller R, Seigel D, Sperduto RD, Blair N, Burton TC, Farber MD, Gragoudas ES, Gunter EW, Haller J, Seddon JM (1995) Serum zinc and serum lipid profiles in 778 adults. Annals Epidem 5:490–496CrossRefGoogle Scholar
  25. 25.
    Laitinen R, Vuori E, Serum VJ (1989) Zinc and copper associations with cholesterol and triglyceride levels in children and adolescents. J Am Coll Nutr 8:400–406PubMedGoogle Scholar
  26. 26.
    Sandstrom B (2001) Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 85:181–185CrossRefGoogle Scholar
  27. 27.
    Regerand TI, Nefedova ZA, Nemova NN, Ruokolainen TR, Toivonen LV, Dubrovina LV, Vuori MLV (2005) Effect of aluminum and iron on lipid metabolism in aquatic invertebrates. Appl Biochem Microbiol 41:192–198CrossRefGoogle Scholar
  28. 28.
    Bonham M, O’Connor JM, McAnena LB, Walsh PM, Downes CS, Hannigan BM, Strain JJ (2003) Zinc supplement has no effect on lipoprotein metabolism, homeostasis and putative indices of copper status in healthy men. Biol Trace Elem Res 93:75–86PubMedCrossRefGoogle Scholar
  29. 29.
    Pool GF, Jaarsveld HV (1998) Dietary iron elevates LDL-cholesterol and decreases plasma antioxidant levels: influence of antioxidants. Res Commun Mol Path Phar 100:139–150Google Scholar
  30. 30.
    Afkhami MA, Mahdi K, Seid MM, Forough N (2008) Effect of ZnSO4 supplementation on lipid and glucose in type 2 diabetic patients. Pak J Nutr 7:550–553CrossRefGoogle Scholar
  31. 31.
    Galleano M, Puntarulo S (1994) Effect of mild iron load on liver and kidney lipid peroxidation. Braz J Med Biol Res 27:2349–2358PubMedGoogle Scholar
  32. 32.
    Engelbart K, Kief H (1970) Uber das funktionelle Verhalten von Zink und insulin in den B-zellen des Rattenpankreas. Virchows Arch 4:294–302Google Scholar
  33. 33.
    Boquist L, Lernmark A (1969) Effects on the endocrine pancreas in Chinese hamsters fed zinc deficient diets. Acta Path Microbiol Scan 76:215–228CrossRefGoogle Scholar
  34. 34.
    Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH (1998) Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 61:303–311PubMedCrossRefGoogle Scholar
  35. 35.
    Zhicai Z, Bin L, Fengjie C (2008) Effect of FeSO4 treatment on glucose metabolism in diabetic rats. Bio Metals 21:685–691Google Scholar
  36. 36.
    Huang Y, Zhou S, Qui L, Wu J, Xu C (1997) Effects of zinc gluconate on nephrotoxicity and glutathione metabolism disorder induced by cis-platin in mice. Drug Metab Drug Interac 14:41–46CrossRefGoogle Scholar
  37. 37.
    Prasad AR, Rabbani P, Abbassii AB, Bowersox E, Fox MR (1978) Experimental zinc deficiency in humans. Ann Intern Med 89:483–490PubMedGoogle Scholar
  38. 38.
    Rabbani P, Prasad AS (1978) Plasma ammonia and liver ornithine transcarbamoylase activity in zinc-deficient rats. Am J Physiol 235:203–206Google Scholar
  39. 39.
    Rahmatullah M, Fong LYY, Lee JSK, Boyde TRC (1980) Zinc-deficiency and activities of urea cycle-related enzymes in rats. Experientia 36:1281–1282PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Saeed Akhtar
    • 1
    Email author
  • Faqir M. Anjum
    • 2
  • Zia Ur Rehman
    • 3
  • Munammad Tauseef Sultan
    • 1
  • Muhammad Riaz
    • 1
  • Anwaar Ahmed
    • 4
  1. 1.Department of Food Science and TechnologyBahauaddin Zakariya UniversityMultanPakistan
  2. 2.National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
  4. 4.Department of Food Science and TechnologyPMAS - Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations