Biological Trace Element Research

, Volume 143, Issue 3, pp 1289–1301 | Cite as

Continuous Positive Airway Pressure Therapy Reduces Oxidative Stress Markers and Blood Pressure in Sleep Apnea–Hypopnea Syndrome Patients

  • Mora Murri
  • Regina García-Delgado
  • José Alcázar-Ramírez
  • Luis Fernández de Rota
  • Ana Fernández-Ramos
  • Fernando Cardona
  • Francisco J. Tinahones
Article

Abstract

Sleep apnea–hypopnea syndrome (SAHS) is characterized by recurrent episodes of hypoxia/reoxygenation, which seems to promote oxidative stress. SAHS patients experience increases in hypertension, obesity and insulin resistance (IR). The purpose was to evaluate in SAHS patients the effects of 1 month of treatment with continuous positive airway pressure (CPAP) on oxidative stress and the association between oxidative stress and insulin resistance and blood pressure (BP). Twenty-six SAHS patients requiring CPAP were enrolled. Measurements were recorded before and 1 month after treatment. Cellular oxidative stress parameters were notably decreased after CPAP. Intracellular glutathione and mitochondrial membrane potential increased significantly. Also, total antioxidant capacity and most of the plasma antioxidant activities increased significantly. Significant decreases were seen in BP. Negative correlations were observed between SAHS severity and markers of protection against oxidative stress. BP correlated with oxidative stress markers. In conclusion, we observed an obvious improvement in oxidative stress and found that it was accompanied by an evident decrease in BP with no modification in IR. Consequently, we believe that the decrease in oxidative stress after 1 month of CPAP treatment in these patients is not contributing much to IR genesis, though it could be related to the hypertension etiology.

Keywords

Continuous positive airway pressure Hypertension Insulin resistance Oxidative stress Sleep apnea–hypopnea syndrome 

References

  1. 1.
    Dean RT, Wilcox I (1993) Possible atherogenic effects of hypoxia during obstructive sleep apnea. Sleep 16:S15–S21PubMedGoogle Scholar
  2. 2.
    Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109(1):33–44PubMedCrossRefGoogle Scholar
  3. 3.
    Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939PubMedGoogle Scholar
  4. 4.
    Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS (1982) Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 60:1390–1397PubMedCrossRefGoogle Scholar
  5. 5.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedCrossRefGoogle Scholar
  6. 6.
    Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33(6):1467–1484PubMedCrossRefGoogle Scholar
  7. 7.
    Brooks B, Cistulli PA, Borkman M, Ross G, McGhee S, Grunstein RR, Sullivan CE, Yue DK (1994) Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness. J Clin Endocrinol Metab 79:1681–1685PubMedCrossRefGoogle Scholar
  8. 8.
    Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KSL (2002) Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 165:670–676PubMedGoogle Scholar
  9. 9.
    Hertz R, Magenhelm J, Berman I, Bar-Tana J (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4. Nature 392:512–516PubMedCrossRefGoogle Scholar
  10. 10.
    Eriksson JW (2007) Metabolic stress in insulin’s target cells leads to ROS accumulation—a hypothetical common pathway causing insulin resistance. FEBS Lett 581(19):3734–3742PubMedCrossRefGoogle Scholar
  11. 11.
    Hernández C, Abreu J, Abreu P, Colino R, Jiménez A (2006) Effects of nasal positive airway pressure treatment on oxidative stress in patients with sleep apnea–hypopnea syndrome. Arch Bronconeumol 42(3):125–129PubMedCrossRefGoogle Scholar
  12. 12.
    Barceló A, Barbe F, de la Peña M, Martinez P, Soriano JB, Pierola J, Agusti AG (2008) Insulin resistance and daytime sleepiness in patients with sleep apnea. Thorax 63:946–950PubMedCrossRefGoogle Scholar
  13. 13.
    West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR (2007) Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62:969–974PubMedCrossRefGoogle Scholar
  14. 14.
    Grupo Español de Sueño (2005) Consenso Nacional sobre el síndrome de apneas-hipopneas durante el sueño. Arch Bronconeumol 41(Extraordinario 4):1–110Google Scholar
  15. 15.
    Chiner E, Arriero J, Signes-Costa J, Marco J, Fuentes I (1999) Validation of the Spanish version of the Epworth Sleepiness Scale in patients with a sleep apnea syndrome. Arch Bronconeumol 35:422–427PubMedGoogle Scholar
  16. 16.
    American Academy of Sleep Medicine (2005) International Classification of Sleep Disorders. Diagnostic and coding manual. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  17. 17.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  18. 18.
    Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity induced oxidant stress in humans. Int J Obes (Lond) 30:400–418CrossRefGoogle Scholar
  19. 19.
    Bierl C, Voetsch B, Jin RC, Handy DE, Loscalzo J (2004) Determinants of human plasma glutathione peroxidase (GPx-3) expression. J Biol Chem 279:839–845CrossRefGoogle Scholar
  20. 20.
    Kasapović J, Pejić S, Todorović A, Stojiljković V, Pajović SB (2008) Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages. Cell Biochem Funct 26:723–730PubMedCrossRefGoogle Scholar
  21. 21.
    Barnes M, Houston D, Worsnop CJ, Neill AM, Mykytyn IJ, Kay A, Trinder J, Saunders NA, Douglas McEvoy R, Pierce RJ (2002) A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am J Respir Crit Care Med 165:773–780PubMedGoogle Scholar
  22. 22.
    Barbé F, Mayoralas LR, Duran J, Masa JF, Maimó A, Montserrat JM, Monasterio C, Bosch M, Ladaria A, Rubio M, Rubio R, Medinas M, Hernandez L, Vidal S, Douglas NJ, Agustí AG (2001) Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. A randomised, controlled trial. Ann Intern Med 134:1015–1023PubMedGoogle Scholar
  23. 23.
    Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, Mullins R, Jenkinson C, Stradling JR, Davies RJ (2002) Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomized parallel trial. Lancet 359:204–210PubMedCrossRefGoogle Scholar
  24. 24.
    Usui K, Bradley TD, Spaak J, Ryan CM, Kubo T, Kaneko Y, Floras JS (2005) Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure. J Am Coll Cardiol 45:2008–2011PubMedCrossRefGoogle Scholar
  25. 25.
    Montserrat JM, García-Río F, Barbé F (2007) Diagnostic and therapeutic approach to nonsleepy apnea. Am J Respir Crit Care Med 176:6–9PubMedCrossRefGoogle Scholar
  26. 26.
    Wiernsperger N, Nivoit P, Bouskela E (2006) Obstructive sleep apnea and insulin resistance: a role for microcirculation? Clinics 61:253–266PubMedCrossRefGoogle Scholar
  27. 27.
    Wolk R, Shamsuzzaman AS, Somers VK (2003) Obesity, sleep apnea, and hypertension. Hypertension 42:1067–1074PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mora Murri
    • 1
  • Regina García-Delgado
    • 2
  • José Alcázar-Ramírez
    • 3
  • Luis Fernández de Rota
    • 3
  • Ana Fernández-Ramos
    • 2
  • Fernando Cardona
    • 1
    • 4
  • Francisco J. Tinahones
    • 4
    • 5
  1. 1.Laboratorio de Investigaciones Biomédicas, Fundación IMABISHospital Clínico Universitario Virgen de la VictoriaMálagaSpain
  2. 2.Servicio de HematologíaHospital Clínico Universitario Virgen de la VictoriaMálagaSpain
  3. 3.Servicio de NeumologíaHospital Clínico Universitario Virgen de la VictoriaMálagaSpain
  4. 4.Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER CB06/003)Instituto de Salud Carlos IIIMálagaSpain
  5. 5.Servicio de Endocrinología y NutriciónHospital Clínico Universitario Virgen de la VictoriaMálagaSpain

Personalised recommendations