Biological Trace Element Research

, Volume 143, Issue 1, pp 518–529 | Cite as

Use of Arsenic Contaminated Irrigation Water for Lettuce Cropping: Effects on Soil, Groundwater, and Vegetal

  • Claudio Beni
  • Simona Marconi
  • Priscilla Boccia
  • Alessandra Ciampa
  • Giampietro Diana
  • Rita Aromolo
  • Elena Sturchio
  • Ulderico Neri
  • Paolo Sequi
  • Massimiliano Valentini
Article

Abstract

The present study investigated the effects of using arsenic (As) contaminated irrigation water in Lactuca sativa L. cropping. Two different arsenic concentrations, i.e., 25 and 85 μg L−1 and two different soils, i.e., sandy and clay loam, were taken into account. We determined the arsenic mobility in the different soil fractions, its amount in groundwater, and the phytotoxicity and genotoxicity. Nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP) were used to assess the lettuce metabolic profile changes and the arsenic uptake by the plant, respectively, as a function of the various conditions studied, i.e., As content and type of soil. Data indicated that at both concentrations in sandy soil, arsenic is in part quickly leached and thus present in groundwater and in part absorbed by the vegetable, being therefore readily available for assimilation by consumption. NMR results reported a large modification of the metabolic pattern, which was depending on the pollutant amount. In clay loam soil, the groundwater had a low As content with respect to sandy soil, and NMR and ICP performed on the lettuce did not reveal severe changes related to As, most likely because the metalloid is bound to the colloidal fraction.

Keywords

Arsenic Irrigation water Nuclear magnetic resonance Inductively coupled plasma Lactuca sativa 

References

  1. 1.
    USEPA (1982) An exposure and risk assessment for arsenic. U.S. Environmental Protection Agency. Office of Water, Regulations and Standards (WH-553). Washington DC 20460 (EPA 440/4-85-005)Google Scholar
  2. 2.
    IARC (1987) Overall evaluations of carcinogenicity: An updating of IARC Monographs Volumes 1–42 (Arsenic and arsenic compounds). IARC Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon. Supplement No. 7Google Scholar
  3. 3.
    ATSDR (2007) Toxicological profile for arsenic (update). Agency for Toxic Substances and Disease Registry. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp2.html. Accessed 12 July 2010
  4. 4.
    Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwater of the western United States. Ground Water 26(3):333–347. doi:10.1111/j.1745-6584.1988.tb00397.x CrossRefGoogle Scholar
  5. 5.
    Pantsar-Kallio M, Manninen PKG (1997) Speciation of mobile arsenic in soil samples as a function of pH. Sci Total Environ 204(2):193–200. doi:10.1016/S0048-9697(97)00176-9 CrossRefGoogle Scholar
  6. 6.
    Smith RA, Alexander RB, Wolman MG (1987) Water-quality trends in the nation’s rivers. Science 235(4796):1607–1615. doi:10.1126/science.235.4796.1607 PubMedCrossRefGoogle Scholar
  7. 7.
    IRC (2007) Arsenic in drinking water. Thematic overview paper 17. International Water and Sanitation Centre. Oxford, UK. http://www.irc.nl/page/33113. Accessed 30 June 2010
  8. 8.
    WHO (2008) Guidelines for drinking-water quality. 3rd ed. Vol 1, Recommendations. World Health Organization. Geneva. http://www.who.int/water_sanitation_health/dwq/GDWPRecomdrev1and2.pdf. Accessed 30 June 2010
  9. 9.
    USEPA (2006) 2006 edition of the drinking water standards and health advisories. U.S. Environmental Protection Agency, Office of Water, Washington DC (EPA 822-R-06-013). http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf. Accessed 15 June 2010
  10. 10.
    Mäkelä-Kurtto R, Eurola M, Justén A, Backman B, Luoma S, Karttunen V, Ruskeeniemi T (2006) Arsenic and other elements in agro-ecosystems in Finland and particularly in the Pirkanmaa region. Risk assessment and risk management, procedure for arsenic in the Tamper region, RAMAS Project 2006Google Scholar
  11. 11.
    Tlustoš P, Göessler W, Száková J, Pavlíková D, Balík J (2004) Arsenic compounds in the leaves and roots of radish grown in three soils treated by dimethylarsinic acid. Plant Soil Environ 50(12):540–546Google Scholar
  12. 12.
    Beni C, Pennelli B, Ronchi B, Marconi S (2007) Xenobiotics concentration and mobility in bovine milk from Italian farms. Prog Nutr 9(1):39–45, in ItalianGoogle Scholar
  13. 13.
    Beni C, Diana G, Marconi S (2008) Bovine milk chain in Italian farms. I. Arsenic level in soil, gravitational and clean water, bovine diet, and milk. Agrochimica LII(2):99–115Google Scholar
  14. 14.
    Sturchio E, Boccia P, Marconi S, Bagni G, Hernandez S, Mascini M, Beni C (2006) Detection of DNA damage by genotoxic substances: comparative investigation with comet assay, micronucleus test and DNA biosensor. Fresenius Environ Bull 15(8a):724–730Google Scholar
  15. 15.
    Koppen G, Verschaeve L (1996) The alkaline comet test on plant cell: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat Res 360(3):193–200. doi:10.1016/S0165-1161(96)90017-5 PubMedGoogle Scholar
  16. 16.
    Poli P, Buschini A, Restivo FM, Ficarelli A, Cassoni F, Ferrero I, Rossi C (1999) Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis 14(6):547–556PubMedCrossRefGoogle Scholar
  17. 17.
    Gichner T, Patková Z, Kim JK (2004) DNA damage measured by the comet assay in eight agronomic plants. Biol Plant 47(2):185–188. doi:10.1023/B:BIOP.0000022249.86426.2a CrossRefGoogle Scholar
  18. 18.
    Piperakis SM (2009) Comet assay: a brief history. Cell Biol Toxicol 25(1):1–3. doi:10.1007/s10565-008-9081-y PubMedCrossRefGoogle Scholar
  19. 19.
    Salerno A, Pierandrei F, Rea E, Sequi P, Valentini M (2005) Definition of internal morphology and structural changes due to dehydration of radish (Raphanus sativus L. cv. Superella) using magnetic resonance imaging spectroscopy. J Food Qual 28:428–438CrossRefGoogle Scholar
  20. 20.
    Marconi S, Beni C, Ciampa A, Diana G, Neri U, Aromolo R, Sequi P, Valentini M (2010) Arsenic contamination in radish tuber investigated by means of MRI and ICP-OES. J Food Quality 33:529–543. doi:10.1111/j.1745/4557.2010.00329.x CrossRefGoogle Scholar
  21. 21.
    Mariette F (2008) NMR imaging of dairy products. In: Webb GA (ed) Modern magnetic resonance. Springer, Heidelberg, pp 1801–1806. doi:10.1007/1-4020-3910-7 Google Scholar
  22. 22.
    Schievano E, Guardini K, Mammi S (2009) Fast determination of histamine in cheese by Nuclear Magnetic Resonance (NMR). J Agric Food Chem 57(7):2647–2652. doi:10.1021/jf803364k PubMedCrossRefGoogle Scholar
  23. 23.
    Brown RJS, Capozzi F, Cavani C, Cremonini MA, Petracci M, Placucci G (2000) Relationships between 1H NMR relaxation data and some technological parameters of meat: a chemometric approach. J Magn Reson 147(1):89–94. doi:10.1006/jmre.2000.2163 PubMedCrossRefGoogle Scholar
  24. 24.
    Bertram HC, Ersen HJ (2004) Applications of NMR in meat science. Ann R NMR S 53:157–202. doi:10.1016/S0066-4103(04)53003-X CrossRefGoogle Scholar
  25. 25.
    Graham SF, Amigues E, Migaud M, Browne RA (2009) Application of NMR based metabolomics for mapping metabolite variation in European wheat. Metabolomics 5(3):302–306. doi:10.1007/s11306-008-0154-y CrossRefGoogle Scholar
  26. 26.
    Brescia MA, Sgaramella A, Ghelli S, Sacco A (2003) 1H HR-MAS NMR and isotopic investigation of bread and flour samples produced in southern Italy. J Sci Food Agric 83(14):1463–1468. doi:10.1002/jsfa.1561 CrossRefGoogle Scholar
  27. 27.
    Wachope RD (1983) Uptake, translocation, and phytotoxicity of arsenic in plants. Van Nostrand Reinhold, New YorkGoogle Scholar
  28. 28.
    MIPAF (2000) Methods of soil chemical analysis. Italian Ministry of Agricultural Policies, National Observatory on Pedology and Soil Quality. Franco Angeli (ed), MilanGoogle Scholar
  29. 29.
    USEPA (2001) Method 200.7. Trace elements in water, solids, and biosolids by inductively coupled plasma-atomic emission spectrometry. Revision 5.0. U.S. Environmental Protection Agency, Office of Science and Technology, Washington DC (EPA-821-R-01-010). http://h2o.enr.state.nc.us/lab/qa/epamethods/200_7.pdf. Accessed 5 July 2010
  30. 30.
    ISO (1995) ISO 11466: Soil quality. Extraction of trace elements soluble in aqua regia. International Organization for Standardization, GenevaGoogle Scholar
  31. 31.
    Rauret G, López Sánchez JF, Sahuquilllo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61PubMedCrossRefGoogle Scholar
  32. 32.
    Angelis KJ, McGuffie M, Menke M, Schubert I (2000) Adaptation to alkylation damage in DNA measured by the comet assay. Environ Mol Mutagen 36(2):146–150. doi:10.1002/1098-2280(2000)36:2<146::AID-EM9>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Menke M, Angelis KJ, Schubert I (2000) Detection of specific DNA lesions by a combination of comet assay and FISH in plants. Environ Mol Mutagen 35(2):132–138PubMedCrossRefGoogle Scholar
  34. 34.
    SPSS (2006) Version 14.0 for Windows. SPSS Inc., Chicago, IllinoisGoogle Scholar
  35. 35.
    Gebel TW, Suchenwirth RH, Bolten C, Dunkelberg HH (1998) Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environ Health Perspect 106(1):33–39PubMedCrossRefGoogle Scholar
  36. 36.
    Pitten FA, Müller G, König P, Schmidt D, Thurow K, Kramer A (1999) Risk assessment of a former military base contaminated with organoarsenic-based warfare agents: uptake of arsenic by terrestrial plants. Sci Total Environ 226(2–3):237–245. doi:10.1016/S0048-9697(98)00400-8 PubMedGoogle Scholar
  37. 37.
    Meharg AA (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17(9):989–993. doi:10.1111/j.1365-3040.1994.tb02032.x CrossRefGoogle Scholar
  38. 38.
    Sheppard SC (1992) Summary of phytotoxic levels of arsenic. Water Air Soil Pollut 64(3–4):539–550. doi:539-550.10.1007/BF00483364 CrossRefGoogle Scholar
  39. 39.
    Sobolev AP, Brosio E, Gianferri R, Segre AL (2005) Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43(8):625–638. doi:10.1002/mrc.1618 PubMedCrossRefGoogle Scholar
  40. 40.
    Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79(3):337–342. doi:10.1016/S0308-8146(02)00170-X CrossRefGoogle Scholar
  41. 41.
    Giovannini C, Filesi C, D’Archivio M, Scazzocchio B, Santangelo C, Masella R (2006) Polyphenols and endogenous antioxidant defences: effects on glutathione and glutathione-related enzymes. Ann Ist Super Sanità 42(3):336–347, in ItalianPubMedGoogle Scholar
  42. 42.
    Rey NA, Howarth OW, Pereira-Maia EC (2004) Equilibrium characterization of the As(III)-cysteine and the As(III)-glutathione systems in aqueous solution. J Inorg Biochem 98(6):1151–1159. doi:10.1016/j.jinorgbio.2004.03.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Claudio Beni
    • 1
  • Simona Marconi
    • 2
  • Priscilla Boccia
    • 3
  • Alessandra Ciampa
    • 2
  • Giampietro Diana
    • 1
  • Rita Aromolo
    • 1
  • Elena Sturchio
    • 3
  • Ulderico Neri
    • 1
  • Paolo Sequi
    • 1
  • Massimiliano Valentini
    • 2
  1. 1.Agricultural Research Council–Research Centre for Soil-Plant SystemRomeItaly
  2. 2.Agricultural Research Council–Research Centre for Soil-Plant System, Instrumental Centre of Tor MancinaMonterotondoItaly
  3. 3.Department of Industrial Installations and Interaction with the Environment (DIPIA)National Institute for Occupational Safety and Prevention (ISPESL)RomeItaly

Personalised recommendations