Skip to main content
Log in

Bioconcentration Factors and Trace Elements Bioaccumulation in Sporocarps of Fungi Collected from Quartzite Acidic Soils

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The content of 19 metals (Al, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Cs, Ba, Ce, Pb, Th, U and Nd) was investigated in 15 edible species of phylum Basidiomycota collected in an area with quartzite acidic soils in a province of the central Spain. The study explores the differences in metal accumulation in relation to fungal species, and the results were related to metal content in soil through the determination of bioconcentration factors. Regarding the highest concentrations, Zn, Al, Cu and Rb were the metals more accumulated in the sporocarps. Notable concentrations were also found in Sr, Zr, Ba, Cs and Ce. The major bioconcentration factors were found for Cu and Zn in sporocarps of Agaricus silvicola and Lepista nuda. Regarding the different species, Tricholoma equestre and Cantharellus cibarius were those with the greatest capacity to absorb trace elements, and in contrast, Amanita caesarea and Agaricus campestris showed the lowest values. The cluster analysis shows that there are some species with the same nutritive physiology that share similarities in the absorptive behaviour. Lactarius sanguifluus and Lactarius deliciosus, both ectomycorrhizas of the genus Pinus, are closely related, and Clitocybe gibba, L. nuda and Marasmius oreades, all of them saprobes on soil organic matter, are very close too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  1. Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  2. Falandysz JJ, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz-Jaromir J, Tanabe S (2008) Some mineral constituents of Parasol mushroom (Macrolepiota procera). J Environ Sci and Health B Pestic Food Contam Agric Wastes 43:187–192

    CAS  Google Scholar 

  3. Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  CAS  Google Scholar 

  4. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  5. Gadd GM (2006) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Gadd GM (2007) Global biogeochemical cycling: fungi and their role in the biosphere. Encyclopedia of ecology. Elsevier, Amsterdam

    Google Scholar 

  7. Amundson R, Richter DD, Humphreys GS, Jobbágy EG, Gaillardet J (2007) Coupling between biota and earth materials in the critical zone. Elements 3:327–332

    Article  CAS  Google Scholar 

  8. Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  9. Meharg AA, Cairney JW (2000) Co-evolution of mycorrhizal symbionts and their host to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  10. Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmströn S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  11. van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  Google Scholar 

  12. Demon A, De Bruin M, Wolterbeek ThH (1988) The influence of pH on trace element uptake by an alga (Scenedesmus pannonicus subsp. Berlin) and fungus (Aureobasidium pullulans). Environ Monit Assess 10:165–173

    Article  CAS  Google Scholar 

  13. Ehrlich HL (2002) Geomicrobiology. Marcel Dekker, New York

    Book  Google Scholar 

  14. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Micol Res 111:3–49

    Article  CAS  Google Scholar 

  15. White NA (2004) The importance of wood decay fungi in forest ecosystem. In: Arora DK (ed) Fungal biotech in agric, food, and environ appl. Marcel Dekker, New York

    Google Scholar 

  16. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  17. Ouzouni PK, Veltsistas PG et al (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Comp Anal 20:480–486

    Article  CAS  Google Scholar 

  18. Agrahar-Murugkar D, Subbulakshmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89:599–606

    Article  CAS  Google Scholar 

  19. Calonge FD, Moreno G, et al (2008) Flora Micológica de Castilla La Mancha. Situación actual y conservación de los hongos del bosque. Memoria Final (2004–2007). Hernandez-Crespo Ed. Real Jardín Botánico CSIC. Madrid

  20. Mino Y, Yukita M (2005) Detection of high levels of bromine in vegetables using X-ray fluorescence spectrometry. J Health Sci 51:365–368

    Article  CAS  Google Scholar 

  21. Rudawska M, Leski T (2005) Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Sci Total Environ 339:103–115

    Article  PubMed  CAS  Google Scholar 

  22. Müller M, Anke M, Illing-Günther H (1997) Aluminium in wild mushrooms and cultivated Agaricus bisporus. Eur Food Res Tech 205:242–247

    Google Scholar 

  23. Vetter J (2005) Mineral composition of basidiomes of Amanita species. Mycol Res 109:746–750

    Article  PubMed  CAS  Google Scholar 

  24. Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188

    Article  PubMed  CAS  Google Scholar 

  25. Blanusa M, Kucak A, Varnai VM, Saric MM (2001) Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil: trace element analysis and occurrence in foodstuffs. J AOAC Int 84:1964–1971

    PubMed  CAS  Google Scholar 

  26. Falandysz JJ, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz-Jaromir J, Tanabe S (2008) Some mineral constituents of Parasol mushroom (Macrolepiota procera). J Environ Sci Health B Pesticides Food Contam Agric Wastes 43:187–192

    CAS  Google Scholar 

  27. Mendil D, Uluözlü OD, Hasdemir E, Çaglar A (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem 88:281–285

    Article  CAS  Google Scholar 

  28. Soylak M, Saraçoglu S, Tüzen M, Mendil D (2005) Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem 92:649–652

    Article  CAS  Google Scholar 

  29. Çayir A, Coşkun M, Coşkun M (2010) The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134:212–219

    Article  PubMed  Google Scholar 

  30. Nyholm NEI, Tyler G (2000) Rubidium content of plants, fungi and animals closely reflects potassium and acidity conditions of forest soils. For Ecol Manag 134:89–96

    Article  Google Scholar 

  31. Wallander H (2000) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229

    Article  CAS  Google Scholar 

  32. Campos JA, Tejera NA, Sánchez CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22:835–841

    Article  PubMed  CAS  Google Scholar 

  33. Dursum N, Özcan MM et al (2006) Mineral content of 34 species of edible mushrooms growing wild in Turkey. J Sci Food Agric 86:1087–1094

    Article  Google Scholar 

  34. Chudzynski K, Falandysz J (2008) Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 73:1230–1239

    Article  PubMed  CAS  Google Scholar 

  35. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture and medicine. Kluwer Academic, New York

    Google Scholar 

  36. van Hees PAW, Rosling A et al (2006) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136:364–377

    Article  Google Scholar 

  37. Thompson GW, Medve RJ (1984) Effects of aluminum and manganese on the growth of ectomycorrhizal fungi. Appl Environ Microbiol 48:556–560

    PubMed  CAS  Google Scholar 

  38. Melgar MJ, Alonso J, García MA (2009) Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334

    Article  PubMed  CAS  Google Scholar 

  39. García MA, Alonso J, Melgar MJ (2009) Lead in edible mushrooms levels and bioaccumulation factors. J Hazard Mater 167:777–783

    Article  PubMed  Google Scholar 

  40. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Bremen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Carlos Rivera from the ITQUIMA—UCLM for his technical support using X-ray fluorescence spectrometer, Carlos Sánchez from Chemistry–Physics Department—UCLM for allowing the measurements, to our students of Agronomic Engineering Faculty of Ciudad Real (ETSIA-CR—UCLM), our friends of the Mycological Society of Saceruela and of AVAN for their invaluable assistance collecting and handling the mushrooms. We also thank sincerely to anonymous reviewers for their effort and time spent reading the paper and making corrections, valuable suggestions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, J.A., Tejera, N.A. Bioconcentration Factors and Trace Elements Bioaccumulation in Sporocarps of Fungi Collected from Quartzite Acidic Soils. Biol Trace Elem Res 143, 540–554 (2011). https://doi.org/10.1007/s12011-010-8853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8853-4

Keywords

Navigation