Biological Trace Element Research

, Volume 142, Issue 3, pp 848–864 | Cite as

Major and Trace Elements in Zooplankton from the Northern Gulf of California During Summer

  • Margarita Elena Rentería-Cano
  • Laura Sánchez-Velasco
  • Evgueni Shumilin
  • Miguel F. Lavín
  • Jaime Gómez-Gutiérrez


We report the distribution of major and trace element concentrations in epipelagic zooplankton collected in the Northern Gulf of California in August 2003. The Bray–Curtis index defined three element assemblages in zooplankton: (1) major metals, which included only two elements, Na (3.6–17.0%) and Ca (1.0–4.8%). Na had its highest concentrations in the shallow tidally mixed Upper Gulf, where high salinity, temperature, and zooplankton biomass (dominated by copepods) prevailed. Ca showed its highest concentrations south of Ballenas Channel, characterized by tidal mixing and convergence-induced upwelling, indicated by low sea-surface temperature, salinity, and zooplankton biomass; (2) Six biological essential elements, like Fe (80–9,100 mg kg−1) and Zn (20–2,570 mg kg−1), were detected in high concentrations in zooplankton collected near Guaymas Basin, which had high surface temperature and chlorophyll a concentrations. (3) Metals of terrigenous origin, such as Sc (0.01–1.4 mg kg−1) and Th (0.03–2.3 mg kg−1), and redox-sensitive metals, like Co (3–23.8 mg kg−1); this was the assemblage with the largest number of elements (15). Both types of elements of assemblage 3 had maximum concentrations in the cyclonic eddy that dominates the summer circulation in the Northern region. We concluded that sediment resuspension by tidal mixing in the Upper Gulf, upwelling south of Ballenas Channel, and the cyclonic eddy were key oceanographic features that affected the element concentrations of epipelagic zooplankton in the Northern Gulf of California. Oceanographic mechanisms such as these may contribute to element incorporation in marine organisms in other seas.


Trace and major elements Zooplankton Instrumental neutron activation analysis Gulf of California Mexico 



This work was funded by CONACyT–Ciencia Básica research projects CB-2005-01-50421 and 2008-105922, and by CGPI-Instituto Politécnico Nacional (research projects 20090578 and 20100670). We thank Alma Rosa Padilla (Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México) for her help in the acquisition of physical data, and Carlos Cabrera (CICESE) for his help in the analysis of satellite SST and chlorophyll a images.


  1. 1.
    Shumilin EN, Carriquiry JD, Camacho-Ibar VF et al (2002) Spatial and vertical distributions of elements in sediments of the Colorado River delta and Upper Gulf of California. Mar Chem 79:113–131CrossRefGoogle Scholar
  2. 2.
    Hirose K (2006) Chemical speciation of trace metals in the seawater: a review. Analytical Sci 22:1055–1063CrossRefGoogle Scholar
  3. 3.
    Martin JH, Knauer GA (1973) The elemental composition of plankton. Geochim Cosmochim Acta 37(1322):1639–1653CrossRefGoogle Scholar
  4. 4.
    Coeale KH, Bruland KW (1988) Copper complexation in the Northeast Pacific. Limnol Oceanogr 33(5):1084–1101CrossRefGoogle Scholar
  5. 5.
    Miller CB (2004) Biological oceanography. Blackwell, OxfordGoogle Scholar
  6. 6.
    Silverberg N, Martínez-López A, Carriquiry JD et al (2004) Contrasts in sedimentation flux below the southern California current in late 1996 and during the El Niño event of 1997–98. Estuar Coast Shelf Sci 59:577–589CrossRefGoogle Scholar
  7. 7.
    Silverberg N, Shumilin E, Aguirre-Bahena F et al (2007) The impact of hurricanes on sedimenting particulate matter in the semiarid Bahía de La Paz, Gulf of California. Continental Shelf Res 27:2513–2522CrossRefGoogle Scholar
  8. 8.
    Lavín MF, Marinone SG (2003) An overview of the physical oceanography of the Gulf of California. In: Velasco Fuentes OU, Sheinbaum J, Ochoa de la Torre JL (eds) Nonlinear processes in geophysical fluid dynamics. Kluwer, Norwell, pp 173–204CrossRefGoogle Scholar
  9. 9.
    Sánchez-Velasco L, Lavín MF, Peguero-Icaza M et al (2009) Seasonal changes in larval fish assemblages in a semi-enclosed sea (Gulf of California). Continental Shelf Res 29(14):1697–1710CrossRefGoogle Scholar
  10. 10.
    Beier E, Ripa P (1999) Seasonal gyres in the northern Gulf of California. J Phys Oceanogr 29(2):302–311CrossRefGoogle Scholar
  11. 11.
    Argote ML, Amador A, Lavín MF et al (1995) Tidal dissipation and stratification in the Gulf of California. J Geophys Res 100:16103–16118CrossRefGoogle Scholar
  12. 12.
    López M, Candela J, Argote ML (2006) Why does the Ballenas Channel have the coldest SST in the Gulf of California? Geophys Res Lett 33:L11603. doi: 10.1029/2006GL025908 CrossRefGoogle Scholar
  13. 13.
    Álvarez-Borrego S, Lara-Lara JR (1991) The physical environment and primary productivity of the Gulf of California. In: Dauphin JP, Simoneit BRT (eds) The Gulf and Peninsular Province of the California. American Association of Petroleum Geologists, Tulsa, pp 555–567, Mem 47Google Scholar
  14. 14.
    Delgadillo-Hinojosa F, Macías-Zamora JV, Segovia-Zavala JA et al (2001) Cadmium enrichment in the Gulf of California. Mar Chem 75:109–122CrossRefGoogle Scholar
  15. 15.
    Delgadillo-Hinojosa F, Segovia-Zavala JA, Huerta-Díaz MA et al (2006) Influence of geochemical and physical processes on the vertical distribution of manganese in Gulf of California waters. Deep Sea Res I 53(8):1301–1319CrossRefGoogle Scholar
  16. 16.
    Segovia-Zavala JA, Lares ML, Delgadillo-Hinojosa F et al (2009) Atmospheric input and concentration of dissolved iron in the surface layer of the Gulf of California. Cienc Mar 35(1):75–90Google Scholar
  17. 17.
    Peguero-Icaza M, Sánchez-Velasco L, Lavín MF et al (2008) Larval fish assemblages, environment and circulation in a semienclosed sea (Gulf of California, Mexico). Estuar Coast Shelf Sci 79(2):277–288CrossRefGoogle Scholar
  18. 18.
    Sánchez-Velasco L, Godínez VM, Shirasago B, Peguero-Icaza M (2004) Datos hidrográficos del Golfo de California: Campaña Oceanográfica GOLCA0308 (del 1 al 7 de agosto del 2003). Comunicaciones Académicas, Serie Oceanografía Física, Informe Técnico 16260. CICESE, Ensenada, Mexico. 44 ppGoogle Scholar
  19. 19.
    Venrick E, Hayward T (1984) Determining chlorophyll on the 1984 CalCOFI surveys. Calif Coop Ocean Fish Investig Data Rep 25:74–79Google Scholar
  20. 20.
    Jeffrey SW, Humprey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194Google Scholar
  21. 21.
    Smith PE, Richardson SL (1979) Técnicas modelo para prospección de huevos y larvas de peces pelágicos. FAO Doc Tec Pesca 175:1–107Google Scholar
  22. 22.
    Demina LL, Galkin SV, Shumilin E (2009) Bioaccumulation of some trace elements in the biota of the hydrothermal fields of the Guaymas Basin (Gulf of California). Boletín de la Sociedad Geológica Mexicana 61(1):31–45Google Scholar
  23. 23.
    Kramer D, Kalin MJ, Stevens E et al. (1972) Collecting and processing data on fish eggs and larvae in the California Current region. NOAA Tech Rep NMFSGoogle Scholar
  24. 24.
    Tregouboff G, Rose MR (1957) Manuel de planctologie Mediterraneene (Manuel of Mediterranean plankton). Centre National de la Recherche Scientifique, ParisGoogle Scholar
  25. 25.
    Smith DL (2004) A guide marine coastal plankton and marine invertebrate larvae. Kendall, IowaGoogle Scholar
  26. 26.
    Gasca R, Suárez-Morales E (1996) Introducción al estudio del zooplancton marino. Chetumal, Quintana Roo, México, El Colegio de la Frontera SurGoogle Scholar
  27. 27.
    Palomares-García R, Suárez-Morales E, Hernández-Trujillo S (1998) Catálogo de los copépodos. (Crustacea) pelágicos del Pacífico Mexicano. Centro Interdisciplinario de Ciencias Marinas, MéxicoGoogle Scholar
  28. 28.
    Field JF, Clarke KR, Warwick RM (1982) A practical strategy for analyzing multispecies distribution patterns. Mar Ecol Progr Ser 8:37–52CrossRefGoogle Scholar
  29. 29.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 7:325–349CrossRefGoogle Scholar
  30. 30.
    Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  31. 31.
    Brinton E, Fleminger A, Sieguel-Causey D (1986) The temperate and tropical planktonic biotas of the Gulf of California. Calif Coop Ocean Fish Investig Data Rep 27:228–266Google Scholar
  32. 32.
    Hidalgo-González RM, Álvarez-Borrego S (2004) Total and new production in the Gulf of California estimated from ocean color data from the satellite sensor SeaWIFS. Deep Sea Res II 51(6–9):739–752CrossRefGoogle Scholar
  33. 33.
    Lavín MF, Sánchez S (1999) On how the Colorado river affected the hydrography of the upper Gulf of California. Continental Shelf Res 19:1545–1560CrossRefGoogle Scholar
  34. 34.
    Millero F (1996) Chemical oceanography. CRC, Boca RatonGoogle Scholar
  35. 35.
    Carriquiry JD, Sánchez A, Camacho-Ibar VF (2001) Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge. Sediment Geol 144(1–2):37–62CrossRefGoogle Scholar
  36. 36.
    Hutchins DA, DiTullio GR, Bruland KW (1993) Iron and regenerated production: evidence for biological iron recycling in two marine environments. Limnol Oceanogr 38(6):1242–1255CrossRefGoogle Scholar
  37. 37.
    Ho TY, Quigg A, Finkel ZV (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  38. 38.
    Campbell AC, Gieskes JM, Lupton JE et al (1988) Manganese geochemistry in the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 52:345–357CrossRefGoogle Scholar
  39. 39.
    Tambiev SB, Demina LL (1992) Biogeochemistry and fluxes of manganese and some other metals in regions of hydrothermal activities (Axial Mountain, Juan de Fuca Ridge and Guaymas Basin, Gulf of California). Deep Sea Res 39(3-4A):687–703Google Scholar
  40. 40.
    Dziak RP, Bohnenstiehl DR, Cowen JP et al (2007) Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events. Geology 35(7):579–582CrossRefGoogle Scholar
  41. 41.
    Pohl C, Löffler A, Hennings U (2004) A sediment trap flux study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57o19.20′N; 20o03.00 E). Mar Chem 84:143–160CrossRefGoogle Scholar
  42. 42.
    Lopez-Calderon J, Martinez A, Gonzalez-Silvera A et al (2008) Mesoscale eddies and wind variability in the northern Gulf of California. J Geophys Res 113:C10001. doi: 10.1029/2007/JC004630 CrossRefGoogle Scholar
  43. 43.
    Muhling BA, Beckley LE, Koslow JA (2007) Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coast. Fish Oceanogr 17(1):16–31CrossRefGoogle Scholar
  44. 44.
    Lavín MF, Godínez VM, Alvarez LG (1998) Inverse-estuarine features of the Upper Gulf of California. Estuar Coast Shelf Sci 47(6):769–795CrossRefGoogle Scholar
  45. 45.
    Alvarez LG, Jones SE (2002) Factors influencing suspended sediment flux in the Upper Gulf of California. Estuar Coast Shelf Sci 54:747–759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Margarita Elena Rentería-Cano
    • 1
  • Laura Sánchez-Velasco
    • 1
  • Evgueni Shumilin
    • 1
  • Miguel F. Lavín
    • 2
  • Jaime Gómez-Gutiérrez
    • 1
  1. 1.Centro Interdisciplinario de Ciencias MarinasLa PazMexico
  2. 2.Departamento de Oceanografía FísicaCICESEEnsenadaMexico

Personalised recommendations