Biological Trace Element Research

, Volume 141, Issue 1–3, pp 3–15 | Cite as

Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase

  • Chan Jin
  • Ying Tang
  • F. Guang Yang
  • X. Lin Li
  • Shan Xu
  • X. Yan Fan
  • Y. Ying Huang
  • Y. Ji Yang
Article

Abstract

Titanium dioxide nanoparticles are massively produced and widely used in daily life, which has posed potential risk to human health. However, the molecular mechanism of TiO2 nanoparticles (NPs) with different crystal phases is not clear. In this study, the characterization of two crystalline phases of TiO2 NPs is evaluated by transmission electron microscopy and X-ray absorption fine structure spectrum; an interaction of these TiO2 NPs with HaCaT cells is studied in vitro using transmission electron microscopy, chemical precipitation method, and X-ray absorption fine structure spectrometry. The coordination and surface properties indicate that only the anatase–TiO2 NPs allow spontaneous reactive oxygen species (ROS) generation, but rutile–TiO2 NPs do not after dispersion. The interaction between TiO2 NPs and cellular components might also generate ROS for both anatase–TiO2 NPs and rutile–TiO2 NPs. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense of the cell or induces the mitochondrial apoptotic mechanisms. Furthermore, Ti had a direct combination with some protein or DNA after NPs enter the cell, which could also lead to cellular toxicity.

Keywords

TiO2 nanoparticles Reactive oxygen species Cell toxicity TEM XAFS 

Notes

Acknowledgments

This work was financially supported by a project supported by the State Key Development Program for Basic Research of China (grant no. 2006CB932505) and project supported by the Shanghai Committee of Science and Technology, China (grant no. 0752nm020). The authors would like to express their thanks to the XAFS station of the Shanghai Synchrotron Radiation Facility.

References

  1. 1.
    Allen NS et al (2005) Photocatalytic coatings for environmental applications. Photochem Photobiol 81(2):279–290 (in English)PubMedCrossRefGoogle Scholar
  2. 2.
    Wolf R, Matz H, Orion E, Lipozencic J (2003) Sunscreens—the ultimate cosmetic. Acta Dermatovenerol Croat 11(3):158–162 (in English)PubMedGoogle Scholar
  3. 3.
    Kaida T, Kobayashi K, Adachi M, Suzuki F (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55(2):219–220 (in English)PubMedGoogle Scholar
  4. 4.
    Zhang AP, Sun YP (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10(21):3191–3193 (in English)PubMedGoogle Scholar
  5. 5.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627 (in English)PubMedCrossRefGoogle Scholar
  6. 6.
    Auffan M et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641 (in English)PubMedCrossRefGoogle Scholar
  7. 7.
    Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22(12):1467–1474 (in English)PubMedCrossRefGoogle Scholar
  8. 8.
    Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424(6946):246–248 (in English)PubMedCrossRefGoogle Scholar
  9. 9.
    Li N et al (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108–115, in EnglishCrossRefGoogle Scholar
  10. 10.
    Wang J et al (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183(1–3):72–80 (in English)PubMedCrossRefGoogle Scholar
  11. 11.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170 (in English)PubMedCrossRefGoogle Scholar
  12. 12.
    Service RF (2004) Nanotoxicology. Nanotechnology grows up. Science 304(5678):1732–1734 (in English)PubMedCrossRefGoogle Scholar
  13. 13.
    Xia T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807 (in English)PubMedCrossRefGoogle Scholar
  14. 14.
    Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5 (in English)PubMedCrossRefGoogle Scholar
  15. 15.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38(5):439–447 (in English)PubMedCrossRefGoogle Scholar
  16. 16.
    Braydich-Stolle LK et al (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374, in EnglishCrossRefGoogle Scholar
  17. 17.
    Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys Rev Lett 69(23):3397–3400 (in English)PubMedCrossRefGoogle Scholar
  18. 18.
    Troger L et al (1994) Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-X-ray photoabsorption. Phys Rev B Condens Matter 49(2):888–903 (in English)PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573 (in English)PubMedCrossRefGoogle Scholar
  20. 20.
    Wilhelm C et al (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011 (in English)PubMedCrossRefGoogle Scholar
  21. 21.
    Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106 (in English)PubMedGoogle Scholar
  22. 22.
    Gupta AK, Berry C, Gupta M, Curtis A (2003) Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience 2(4):255–261 (in English)PubMedCrossRefGoogle Scholar
  23. 23.
    Kim JS et al (2006) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326 (in English)PubMedGoogle Scholar
  24. 24.
    Grunes LA (1983) Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys Rev B 27:2111–2131CrossRefGoogle Scholar
  25. 25.
    Hamann DR (1997) Adaptive-coordinate electronic structure of 3d bands: TiO2. Phys Rev B 56(23):14979–14984 (in English)CrossRefGoogle Scholar
  26. 26.
    Vittadini A, Selloni A, Rotzinger FP, Gratzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81(14):2954–2957 (in English)CrossRefGoogle Scholar
  27. 27.
    Kim SK, Hwang GW, Kim WD, Hwang CS (2006) Transformation of the crystalline structure of an ALD TiO2 film on a Ru electrode by O-3 pretreatment. Electrochem Solid St 9(1):F5–F7 (in English)CrossRefGoogle Scholar
  28. 28.
    Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402 (in English)PubMedCrossRefGoogle Scholar
  29. 29.
    Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806 (in English)PubMedCrossRefGoogle Scholar
  30. 30.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61(9):727–728 (in English)PubMedCrossRefGoogle Scholar
  31. 31.
    Rothen-Rutishauser B, Muhlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9 (in English)PubMedCrossRefGoogle Scholar
  32. 32.
    Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560 (in English)PubMedCrossRefGoogle Scholar
  33. 33.
    Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352 (in English)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chan Jin
    • 1
  • Ying Tang
    • 1
  • F. Guang Yang
    • 1
  • X. Lin Li
    • 1
  • Shan Xu
    • 1
  • X. Yan Fan
    • 1
  • Y. Ying Huang
    • 2
  • Y. Ji Yang
    • 1
  1. 1.Institute of BiophysicsThe Second Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Synchrotron Radiation FacilityShanghaiPeople’s Republic of China

Personalised recommendations