Biological Trace Element Research

, Volume 139, Issue 2, pp 168–176 | Cite as

Iodine Distribution in the Environment as a Limiting Factor for Roe Deer Antler Development

  • Róbert LehoczkiEmail author
  • Károly Erdélyi
  • Krisztina Sonkoly
  • László Szemethy
  • Sándor Csányi


The iodine-containing hormones produced by the thyroid gland play a role in the complex neuro-hormonal regulation of antler development. The proper function of the thyroid depends on the adequate iodine supply of the organism, which is directly related to the iodine content of food and drinking water. The purpose of this study was to explore the connection between the iodine content of the water base, which has a strong correlation with the iodine concentration of environmental components available to animals, and the antler weight of roe deer (Capreolus capreolus) shot in Hungarian hunting areas. Using a general linear model, controlling for the collective effects of other environmental factors (deer population density, harvest rate, land use, and soil fertility information), the iodine content of the water base explained 51.4% of the total variance of antler weights. The results suggest that antler weights increase with increasing iodine concentration regardless of other factors; thus, the environmental iodine distribution can be a limiting factor suppressing roe deer performance assessed here as antler weight. Further experimental studies of controlled iodine uptake are needed to define the exact physiological iodine requirements of roe deer bucks.


Iodine Capreolus capreolus Antler weight Environmental effects Limiting factor 



The authors wish to thank the National Public Health and Medical Officer Service for providing the dataset of water base iodine concentration and the Hungarian Academy of Sciences, Research Institute of Soil Science and Agricultural Chemistry (HAS-RISSAC) for the permit to use the digital soil database of the agrotopography map.


  1. 1.
    JM Suttie, C Li, GA Bubenik, HJ Rolf (1998) Studies of antler growth: A review of the literature. In: Zomborszky Z (ed) Advances in deer biology. Proceedings of the 4th International Deer Biology Congress, Kaposvár, Hungary, pp 375–382Google Scholar
  2. 2.
    Bubenik GA, Sempéré AJ, Hamr J (1987) Developing antler, a model for endocrine regulation of bone growth. Concentration gradient of T3 T4, and alkaline phosphatase in the antler, jugular, and the saphenous veins. Calcified Tissue Int 41:38–43CrossRefGoogle Scholar
  3. 3.
    Shi ZD, Barrell GK (1994) Thyroid hormones are required for the expression of seasonal changes in red deer (Cervus elaphus) stags. Reprod Fert Develop 6:187–192CrossRefGoogle Scholar
  4. 4.
    Price JS, Allen S, Faucheux C, Althnaian T, Mount JG (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207:603–618CrossRefPubMedGoogle Scholar
  5. 5.
    Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock, 3rd edn. CABI, WallingfordCrossRefGoogle Scholar
  6. 6.
    Todini L (2007) Thyroid hormones in small ruminants: effect of endogenous, environmental and nutritional factors. Animal 1:997–1008CrossRefGoogle Scholar
  7. 7.
    Hoption CSA (2006) Hypothesis: dietary iodine intake in the etiology of cardiovascular disease. J Am Coll Nutr 25:1–11Google Scholar
  8. 8.
    Potter BJ, Jones GB, Buckley RA, Belling GB, McIntosh GH, Hetzel BS (1980) Production of severe iodine deficiency in sheep using a prepared low-iodine diet. Aust J Biol Sci 33:53–61PubMedGoogle Scholar
  9. 9.
    Potter BJ, McIntosh GH, Hetzel BS (1981) The effect of iodine deficiency on fetal brain development in the sheep. In: Hetzel BS, Smith RM (eds) Fetal brain disorders. Recent approaches to the problem of mental deficiency. Elsevier/North Holland Biomedical, Amsterdam, pp 119–148Google Scholar
  10. 10.
    Whitehead DC (1985) Source of iodine for ruminant animals. J Sci Food Agr 36:542–543CrossRefGoogle Scholar
  11. 11.
    Anke M, Groppel B, Müller M, Scholz E, Krämer K (1995) The iodine supply of humans depending on site, food offer and water supply. Fresenius J Anal Chem 352:97–101CrossRefGoogle Scholar
  12. 12.
    Whitehead DC (1984) The distribution and transformations of iodine in the environment. Environ Int 10:321–339CrossRefGoogle Scholar
  13. 13.
    Whitehead DC (2000) Nutrient elements in grassland: soil–plant–animal relationships. CABI, WallingfordCrossRefGoogle Scholar
  14. 14.
    Singh JL, Sharma MC, Prasad S, Kumar M, Gupta GC, Patnaik AK (2002) Prevalence of endemic goitre in goats in relation to iodine status of the soil, water and fodder. Indian Vet J 79:657–660Google Scholar
  15. 15.
    Karmarkar MG, Deo MG, Kochupillai N, Ramalingaswami V (1974) Pathophysiology of Himalayan endemic goiter. Am J Clin Nutr 27:96–103PubMedGoogle Scholar
  16. 16.
    Grace ND, Wilson PR (2002) Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. New Zeal Vet J 50:252–259Google Scholar
  17. 17.
    Bubenik GA (1990) Neuroendocrine regulation of the antler cycle. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns, and antlers: evolution, morphology, physiology, and social significance. Springer, New York, pp 265–297Google Scholar
  18. 18.
    Szederjei Á, Szederjei M (1971) Geheimnis des Weltrekordes. Das Reh. Terra, BudapestGoogle Scholar
  19. 19.
    Merke F (1965) Die Eiszeit als primordiale Ursache des endemischen Kropfes. Schweizerische Medizinische Wochenschrift 95:1183–1192PubMedGoogle Scholar
  20. 20.
    Prakfalvi P (1993) A sóshartyányi Jódaqua kutatástörténete és földtana [Research history and geology of the Jódaqua from Sóshartyán]. Axel Springer, Budapest [In Hungarian]Google Scholar
  21. 21.
    Sajgó M-né, Farkas I (1990) Ivóvizek jódtartalma és a lakosság jódellátottságának mutatói [Iodine content of drinking waters in Hungary and indicators of iodine supply of the population]. Egészségtudomány 34:28–33 [In Hungarian]Google Scholar
  22. 22.
    Sajgó K, Farkas I, Gönczy J (1992) Iodine deficiency disorders in Hungary. IDD Newsletter 8:33–34Google Scholar
  23. 23.
    Strickland BK, Demarais S (2008) Influence of landscape composition and structure on antler size of white-tailed deer. J Wildlife Manage 72:1101–1108CrossRefGoogle Scholar
  24. 24.
    Strickland BK, Demarais S (2006) Effectiveness of the State Soil Geographic Database (STATSGO) to predict white-tailed deer morphometrics in Mississippi. Wildlife Soc B 34:1264–1272CrossRefGoogle Scholar
  25. 25.
    Vanpé C, Gaillard JM, Kjellander P, Mysterud A, Magnien P, Delorme D, Van Laere G, Klein F, Liberg O, Hewison AJM (2007) Antler size provides an honest signal of male phenotypic quality in roe deer. Am Nat 169:481–493CrossRefPubMedGoogle Scholar
  26. 26.
    Azorit C, Analla M, Carrasco R, Munoz-Coro J (2002) Influence of age and environment on antler traits in Spanish red deer (Cervus elaphus hispanicus). Z Jagdwiss 48:137–144CrossRefGoogle Scholar
  27. 27.
    Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212:3985–3993CrossRefPubMedGoogle Scholar
  28. 28.
    Myrberget S (1988) Hunting statistics as indicators of game population size and composition. Statistical Journal of the United Nations ECE 5:289–301Google Scholar
  29. 29.
    Várallyay Gy (1985) Magyarország 1:100 000 méretarányú agrotopográfiai térképe [Hungarian agrotopography map at the scale of 1:100 000]. Agrokémia és Talajtan 34:243–248 [In Hungarian]Google Scholar
  30. 30.
    Pattanaik AK, Khan SA, Varshney VP, Bedi SPS (2001) Effect of iodine level in mustard (Brassica juncea) cake-based concentrate supplement on nutrient utilisation and serum thyroid hormones of goats. Small Ruminant Res 41:51–59CrossRefGoogle Scholar
  31. 31.
    Ryg M, Langvatn R (1982) Seasonal changes in weight gain, growth hormone, and thyroid hormones in male red deer (Cervus elaphus atlanticus). Can J Zool 60:2577–2581CrossRefGoogle Scholar
  32. 32.
    Seal US, Verme LJ, Ozoga JJ, Erickson AW (1972) Nutritional effects on thyroid activity and blood of white tailed deer. J Wildlife Manage 36:1041–1052CrossRefGoogle Scholar
  33. 33.
    Bubenik GA, Schams D, White RG, Rowell J, Blake J, Bartos L (1998) Seasonal levels of metabolic hormones and substrates in male and female reindeer (Rangifer tarandus). Comp Biochem Phys C 120:307–315Google Scholar
  34. 34.
    Hamr J, Bubenik GA (1990) Seasonal thyroid hormone levels of free-ranging white-tailed deer (Odocoileus virginianus) in Ontario. Can J Zool 68:2174–2180CrossRefGoogle Scholar
  35. 35.
    Seal US, Nelson ME, Mech LD, Hoskinson RL (1978) Metabolic indicators of habitat differences in four Minnesota deer populations. J Wildlife Manage 42:746–754CrossRefGoogle Scholar
  36. 36.
    Brown RD, Chao CC, Faulkner LW (1983) Thyroxine levels and antler growth in white-tailed deer. Comp Biochem Physiol 75A:71–75CrossRefGoogle Scholar
  37. 37.
    Pantić V (1967) Ultrastructure of deer and roe-buck thyroid. Cell Tissue Res 81:487–500Google Scholar
  38. 38.
    Sempéré AJ, Boissin J (1982) Neuroendocrine and endocrine control of the antler cycle in roe deer. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville, pp 109–122Google Scholar
  39. 39.
    Bubenik GA, Bubenik AB (1986) Phylogeny and ontogeny of antlers and neuro-endocrine regulation of the antler cycle—a review. Mammal Inform 33:97–123Google Scholar
  40. 40.
    Watkins BE, Ullrey DE (1983) Iodine concentration in plants used by white-tailed deer in Michigan. J Wildlife Manage 47:1220–1226CrossRefGoogle Scholar
  41. 41.
    Mackowiak CL, Grossl PR (1999) Iodate and iodine effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant Soil 212:135–143CrossRefPubMedGoogle Scholar
  42. 42.
    Whitehead DC (1973) Uptake and distribution of iodine in grass and clover plants grown in solution culture. J Sci Food Agr 24:43–50CrossRefGoogle Scholar
  43. 43.
    Zhu YG, Huang YZ, Hu Y, Liu YX (2003) Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effect of iodine species and solution concentrations. Environ Int 29:33–37CrossRefPubMedGoogle Scholar
  44. 44.
    Ceacero F, Landete-Castillejos T, García A, Estévez JA, Martinez A, Calatayud A, Gaspar-López E, Gallego L (2009) Free-choice mineral consumption in Iberian red deer (Cervus elaphus hispanicus) response to diet deficiencies. Livest Sci 122:345–348CrossRefGoogle Scholar
  45. 45.
    Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Tech 132:1–27CrossRefGoogle Scholar
  46. 46.
    Rerábek J, Bubenik A (1956) Studies on the mineral metabolism of antlered deer by means of radioactive isotopes. Z Jagdwiss 2:119–123CrossRefGoogle Scholar
  47. 47.
    Watkins BE, Ullrey DE (1983) Thyroid iodine and serum thyroid hormone levels in wild white-tailed deer (Odocoileus virginianus) from central Michigan. Can J Zool 61:1116–1119CrossRefGoogle Scholar
  48. 48.
    Clark G, Orr M, Gill J (2000) Quarterly review of diagnostic cases—October to December 1999. Surveillance 27:11–13Google Scholar
  49. 49.
    Delange F (2002) Iodine deficiencies in Europe and its consequences: an update. Eur J Nucl Med 29(Suppl 2):404–416CrossRefGoogle Scholar
  50. 50.
    Knowles SO, Grace ND, Knight TW, McNabb WC, Lee J (2006) Reasons and means for manipulating the micronutrient composition of milk from grazing dairy cattle. Anim Feed Sci Tech 131:154–167CrossRefGoogle Scholar
  51. 51.
    Atwood TC, Weeks HP Jr (2003) Sex-specific patterns of mineral lick preference in white-tailed deer. Northeast Nat 10:409–414Google Scholar
  52. 52.
    Putman RJ, Staines BW (2004) Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justification, feeding practice and effectiveness. Mammal Rev 34:285–306CrossRefGoogle Scholar
  53. 53.
    Schultz SR, Johnson MK (1992) Effect of supplemental mineral licks on white-tailed deer. Wildlife Soc B 20:303–308Google Scholar
  54. 54.
    Watkins BE, Ullrey DE, Nachreiner RF, Schmitt SM (1983) Effect of supplemental iodine and season on thyroid activity of white-tailed deer. J Wildlife Manage 47:45–58CrossRefGoogle Scholar
  55. 55.
    Schöne F, Rajendram R (2009) Iodine in farm animals. In: Preedy VR, Burrow GN, Watson RR (eds) Comprehensive handbook of iodine: nutritional, biochemical pathological and therapeutic aspects. Academic, Burlington, pp 151–170Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Róbert Lehoczki
    • 1
    Email author
  • Károly Erdélyi
    • 2
  • Krisztina Sonkoly
    • 1
  • László Szemethy
    • 1
  • Sándor Csányi
    • 1
  1. 1.Institute for Wildlife ConservationSzent István UniversityGödöllőHungary
  2. 2.Central Agriculture OfficeVeterinary Diagnostic DirectorateBudapestHungary

Personalised recommendations