Biological Trace Element Research

, Volume 135, Issue 1–3, pp 220–232 | Cite as

Protective Role of Melatonin on Oxidative Stress Status and RNA Expression in Cerebral Cortex and Cerebellum of AβPP Transgenic Mice After Chronic Exposure to Aluminum

  • Tania García
  • José L. Esparza
  • Montserrat Giralt
  • Marta Romeu
  • José L. Domingo
  • Mercedes Gómez


Aluminum (Al) has been associated with pro-oxidant effects, as well as with various serious neurodegenerative diseases such as Alzheimer’s disease (AD). On the other hand, melatonin (Mel) is a known antioxidant, which can directly act as free radical scavenger, or indirectly by inducing the expression of some genes linked to the antioxidant defense. In this study, 5-month-old AßPP female transgenic (Tg2576) (Tg) and wild-type mice were fed with Al lactate supplemented in the diet (1 mg Al/g diet). Concurrently, animals received oral Mel (10 mg/kg) until the end of the study at 11 months of age. Four treatment groups were included for both Tg and wild-type mice: control, Al only, Mel only, and Al + Mel. At the end of the treatment period, cortex and cerebellum were removed and processed to examine the following oxidative stress markers: reduced glutathione, oxidized glutathione, cytosolic Cu–Zn superoxide dismutase (SOD1), glutathione reductase (GR), glutathione peroxidase, catalase (CAT), and thiobarbituric acid reactive substances. Moreover, the gene expression of SOD1, GR, and CAT was evaluated by real-time RT-PCR. The biochemical changes observed in cortex and cerebellum suggest that Al acted as a pro-oxidant agent. Melatonin exerted an antioxidant action by increasing the mRNA levels of the enzymes SOD1, CAT, and GR evaluated in presence of Al and Mel, independently on the animal model.


Aluminum Melatonin Tg2576 mice Oxidative stress Gene expression 



Financial support for this study was provided by the “Fondo de Investigación Sanitaria” (FIS), Ministry of Health, Spain, through grant number PI050622.


  1. 1.
    Yokel RA, Florence RL (2006) Aluminum bioavailability from the approved food additive leavening agent acid sodium aluminum phosphate, incorporated in to a baked good, is lower than from water. Toxicology 227:86–93CrossRefPubMedGoogle Scholar
  2. 2.
    Albendea CD, Gómez-Trullén EM, Fuentes-Broto L, Miana-Mena FJ, Millán-Plano S, Reyes-Gonzales MC, Martínez-Ballarín E, García JJ (2007) Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminum. J Trace Elem Med Biol 21:261–268CrossRefPubMedGoogle Scholar
  3. 3.
    Tripathi S, Mahdi AA, Nawab A, Chander R, Hasan M, Siddiqui MS, Mahdi F, Mitra K, Bajpai VK (2009) Influence of age on aluminum induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: a behavioral, biochemical and ultrastructural study. Brain Res 9:107–116CrossRefGoogle Scholar
  4. 4.
    Bohrer D, Bertagnolli DC, de Oliveira SM, do Nascimento PC, de Carvalho LM, Garcia SC, Arantes LC, Barros EJ (2009) Role of medication in the level of aluminium in the blood of chronic haemodialysis patients. Nephrol Dial Transplant 24:1277–1281CrossRefPubMedGoogle Scholar
  5. 5.
    Domingo JL (2006) Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimers Dis 10:331–341PubMedGoogle Scholar
  6. 6.
    Exley C, Esir MM (2006) Severe cerebral congophilic angiophaty coincident with increased brain aluminum in a resident of Camelford, Cornwall, UK. J Neurol Neurosug Psychiatry 77:877–879CrossRefGoogle Scholar
  7. 7.
    Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27:385–394CrossRefPubMedGoogle Scholar
  8. 8.
    Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253PubMedGoogle Scholar
  9. 9.
    Drago D, Bolognin S, Zatta P (2008) Role of metal ions in the Aß oligomerization in Alzheimer’s disease and in other neurological disorders. Curr Alzheimer Res 5:500–507CrossRefPubMedGoogle Scholar
  10. 10.
    Walton JR (2008) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30:82–193Google Scholar
  11. 11.
    Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 36:380–387CrossRefPubMedGoogle Scholar
  12. 12.
    Esparza JL, Gómez M, Nogués MR, Paternain JL, Mallol J, Domingo JL (2005) Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res 39:129–136PubMedGoogle Scholar
  13. 13.
    Gómez M, Esparza JL, Nogués MR, Giralt M, Domingo JL (2005) Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med 38:104–111CrossRefPubMedGoogle Scholar
  14. 14.
    Di Carlo M (2009) Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. Eur Biophys J. doi: 10.1007/s00249-009-0439-8 PubMedGoogle Scholar
  15. 15.
    Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16:1138–1140PubMedGoogle Scholar
  16. 16.
    Maynard CJ, Cappai R, Volitakis I, Cherny RA, Masters CL, Li QX, Bush AI (2006) Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer beta-amyloid pathology. J Inorg Biochem 100:952–962CrossRefPubMedGoogle Scholar
  17. 17.
    Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15:223–240PubMedGoogle Scholar
  18. 18.
    Xie PI, Yokel RA (1996) Aluminum facilitation of iron mediated lipid peroxidation is dependet on substrate, pH and aluminum and iron concentrations. Arch Biochem Biophys 327:222–226CrossRefPubMedGoogle Scholar
  19. 19.
    Esparza JL, Gomez M, Romeu M, Mulero M, Sanchez DJ, Mallol J, Domingo JL (2003) Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin. J Pineal Res 35:32–39CrossRefPubMedGoogle Scholar
  20. 20.
    Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelu P, Jagannatha Rao KS (2005) Aluminum in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62:143–158CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar V, Bal A, Gill KD (2008) Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminum. Brain Res 26:94–103CrossRefGoogle Scholar
  22. 22.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147CrossRefPubMedGoogle Scholar
  23. 23.
    Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H (2004) Orally administered aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98:2022–2031CrossRefPubMedGoogle Scholar
  24. 24.
    García T, Esparza JL, Nogués MR, Romeu M, Domingo JL, Gómez M (2009) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum. Hippocampus. doi: 10.1002/hipo.20612 Google Scholar
  25. 25.
    Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 7:444–458CrossRefPubMedGoogle Scholar
  26. 26.
    Hardeland R, Pandi-Perumal SR, Cardinali DP (2005) Melatonin. Int J Biochem Cell Biol 38:313–316CrossRefPubMedGoogle Scholar
  27. 27.
    Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinalli DP, Poeggeler B, Hardeland R (2006) Melatonin. Nature’s most versatile biological signal? FEBS J 273:2813–2838CrossRefPubMedGoogle Scholar
  28. 28.
    Reiter RJ, Korkmaz A (2008) Clinical aspects of melatonin. Saudi Med J 29:1537–1547PubMedGoogle Scholar
  29. 29.
    Liu P, Zheng Y, Smith PF, Bilkey DK (2003) Changes in NOS protein expression and activity in the rat hippocampus, entorhinal and postrhinal cortices after unilateral electrolytic perirhinal cortex lesions. Hippocampus 13:561–571CrossRefPubMedGoogle Scholar
  30. 30.
    Maharaj DS, Glass BD, Daya S (2007) Melatonin: new places in therapy. Biosci Rep 27:299–320CrossRefPubMedGoogle Scholar
  31. 31.
    Kotler M, Rodríguez C, Sáinz RM et al (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24:83–89CrossRefPubMedGoogle Scholar
  32. 32.
    Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA, Chain DG, Neria E (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1001–1008CrossRefGoogle Scholar
  33. 33.
    Reiter RJ, Tan DX, Pappolla MA (2004) Melatonin relieves the neural oxidative burden that contributes to dementias. Ann N Y Acad Sci 1035:179–196CrossRefPubMedGoogle Scholar
  34. 34.
    Ma J, Shaw VE, Mitrofanis J (2009) Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord 15:307–314CrossRefPubMedGoogle Scholar
  35. 35.
    Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276CrossRefPubMedGoogle Scholar
  36. 36.
    Rodrigo J, Fernandez-Vizcarra P, Castro-Blanco S, Bentura ML, Nieto M, Gomez-Isla T, Martinez-Murillo R, Martinez A, Serrano J, Fernandez AP (2004) Nitric oxide in the cerebral cortex of amyloid-precursor protein (SW) Tg2576 transgenic mice. Neuroscience 128:73–89CrossRefPubMedGoogle Scholar
  37. 37.
    Bizon J, Prescott S, Nicolle MM (2007) Intact spatial learning in adult Tg 2576 mice. Neurobiol Aging 28:440–446CrossRefPubMedGoogle Scholar
  38. 38.
    López-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP (Sw, Ind). J Alzheimers Dis 12:229–240PubMedGoogle Scholar
  39. 39.
    Duyckaerts C, Poitier MC, Delatour B (2008) Alzheimer disease models and human neuropathology similarities and differences. Acta Neuropathol 115:5–38CrossRefPubMedGoogle Scholar
  40. 40.
    Gómez M, Esparza JL, Cabré M, García T, Domingo JL (2008) Aluminum exposure through the diet: metal levels in AβPP transgenic mice, a model for Alzheimer’s disease. Toxicology 249:214–219CrossRefPubMedGoogle Scholar
  41. 41.
    Ribes D, Colomina MT, Vicens P, Domingo JL (2008) Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer’s disease. Exp Neurol 214:293–300CrossRefPubMedGoogle Scholar
  42. 42.
    Golub MS, Germann SL, Keen CL (2003) Developmental aluminum toxicity in mice can be modulated by low concentrations of minerals (Fe, Zn, P, Ca, Mg) in the diet. Biol Trace Elem Res 93:213–226CrossRefPubMedGoogle Scholar
  43. 43.
    Nogués MR, Giralt M, Romeo M, Mulero M, Sánchez-Martos V, Rodríguez E, Acuña-Castroviejo D, Mallol J (2006) Melatonin reduces oxidative stress in erythrocytes and plasma of senescence-accelerated mice. J Pineal Res 41:142–149CrossRefPubMedGoogle Scholar
  44. 44.
    Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226CrossRefPubMedGoogle Scholar
  45. 45.
    Wheeler C, Salzman J, Elsayed N (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity. Anal Biochem 184:193–199CrossRefPubMedGoogle Scholar
  46. 46.
    ABI Prism 7700 (1997) Sequence detection system. User Bulletin No. 2. Revision A. Foster City, CA: Applied BiosystemsGoogle Scholar
  47. 47.
    Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Gutierrez-Cuesta J, Pallas M, Camins A, Rodriguez-Colunga MJ, Coto-Montes A (2008) Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J Pineal Res 45:302–311CrossRefPubMedGoogle Scholar
  48. 48.
    Colomina MT, Roig JL, Sanchez DJ, Domingo JL (2002) Influence of age on aluminum-induced neurobehavioral effects and morphological changes in rat brain. Neurotoxicology 23:775–781CrossRefPubMedGoogle Scholar
  49. 49.
    Lack B, Daya S, Nyokong T (2001) Interaction of serotonin and melatonin with sodium, potassium, calcium, lithium and aluminum. J Pineal Res 31:102–108CrossRefPubMedGoogle Scholar
  50. 50.
    Candan N, Tuzmen N (2008) Very rapid quantification of malondialdehyde (MDA) in rat brain exposed to lead, aluminum and phenolic antioxidants by high-performance liquid chromatography-fluorescence detection. Neurotoxicology 29:708–713CrossRefPubMedGoogle Scholar
  51. 51.
    Abd-Elghaffar SKH, El-Sokkary GH, Sharkawy AA (2005) Aluminum-induced neurotoxicity and oxidative damage in rabbits: protective effect of melatonin. Neuro Endocrinol Lett 26:609–616PubMedGoogle Scholar
  52. 52.
    Akbulut KG, Gonül B, Akbulut H (2008) Exogenous melatonin decreases age-induced lipid peroxidation in the brain. Brain Res 1238:31–35CrossRefPubMedGoogle Scholar
  53. 53.
    Rodríguez MI, Escamesm G, López LC, López A, García JA, Ortiz F, Sánchez V, Romeu M, Acuña-Castroviejo D (2008) Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol 4:749–756CrossRefGoogle Scholar
  54. 54.
    Antolin I, Mayo JC, Sainz RM, del Brío MI, Herrera F, Martín V, Rodriguez C (2002) Protective effects of melatonin in an experimental model of Parkinson’s disease. Brain Res 943:163–173CrossRefPubMedGoogle Scholar
  55. 55.
    Baydas G, Yasea A, Tuzcu M (2005) Comparison of impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats. J Pineal Res 39:346–352CrossRefPubMedGoogle Scholar
  56. 56.
    Srinivasan V, Pandi-Perumal SR, Cardinali D, Poeggeler B, Hardeland R (2006) Melatonin in Alzheimer’s disease and other neurodegenative disorders. Behav Brain Funct 2:15CrossRefPubMedGoogle Scholar
  57. 57.
    Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Tania García
    • 1
  • José L. Esparza
    • 1
  • Montserrat Giralt
    • 2
  • Marta Romeu
    • 2
  • José L. Domingo
    • 1
  • Mercedes Gómez
    • 1
  1. 1.Laboratory of Toxicology and Environmental Health, IISPV, School of Medicine“Rovira i Virgili” UniversityReusSpain
  2. 2.Pharmacology Unit, School of Medicine“Rovira i Virgili” UniversityReusSpain

Personalised recommendations