Application of Anodic Stripping Voltammetry for Zinc, Copper, and Cadmium Quantification in the Aqueous Humor: Implications of Pseudoexfoliation Syndrome

  • Vassiliki S. Panteli
  • Dimitra G. Kanellopoulou
  • Sotirios P. Gartaganis
  • Petros G. KoutsoukosEmail author


Anodic stripping voltammetric (ASV) procedure, using mercury film electrode, was optimized and applied to determine the concentrations of zinc, cadmium, and copper in the aqueous humor. Concentration levels as low as 1 ppb of the test metals was possible to be detected using short electrolysis times (120 s) and microquantities of aqueous humor (up to 35 μL). As a first application of the voltammetric analysis of trace metals in the aqueous humor, the role of the three selected trace elements in the pseudoexfoliation (PEX) syndrome was examined. Samples from aqueous humor were collected during cataract extraction from patients with and without PEX. The zinc and copper concentration levels in the aqueous humor did not show statistically significant difference in the study and control group. Cadmium was detected in a small number of samples, without however statistical differences between the two groups. ASV proved to be a highly precise and sensitive tool for the quantification of heavy metal ions in aqueous humor. Further studies may lead to useful conclusions for the role of zinc, copper, or cadmium in PEX syndrome.


Aqueous humor Pseudoexfoliation Anodic stripping voltammetry Zinc Cadmium Copper 


  1. 1.
    R. Ritch, Exfoliation syndrome: The most common identifiable cause of open-angle glaucoma, J. Glaucoma. 3, 176–178 (1994).PubMedGoogle Scholar
  2. 2.
    G.O. Naumann, U. Schlötzer-Schrehardt, and M. Küchle, Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and systemic manifestations (review), Opthalmology. 105, 951–968 (1998).CrossRefGoogle Scholar
  3. 3.
    R. Ritch and U. Schlötzer-Schrehardt, Exfoliation syndrome (major review), Surv. Ophthalmol. 45, 265–315 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    B.W. Streeten, S.A. Gibson and A.J. Dark, Pseudoexfoliative material contains an elastic microfibrillar-associated glycoprotein, Trans. Am. Ophthalmol. Soc. 84, 304–320 (1986).PubMedGoogle Scholar
  5. 5.
    U. Schlötzer-Schrehardt and G.O. Naumann, Ocular and systemic pseudoexfoliation syndrome (review), Am. J. Ophthalmol. 141, 921–937 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    U. Schlötzer-Schrehardt, K.-H. Körtje and C. Erb, Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material, Curr. Eye Res. 22, 154–162 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    E.-L. Lakomaa and P. Eklund, Trace element analysis of human cataractous lenses by neutron activation analysis and atomic absorption spectrometry with special reference to pseudo-exfoliation of the lens capsule, Ophthalmic Res. 10, 302–306 (1978).Google Scholar
  8. 8.
    Z. Yildirim, N.I. Uçgun, N. Kiliç, E. Gürsel and A. Sepici-Dinçel, Pseudoexfoliation syndrome and trace elements, Ann. N. Y. Acad. Sci. 1100, 207–212 (2007).CrossRefPubMedGoogle Scholar
  9. 9.
    T. Cumurcu, D. Mendil and I. Etikan, Levels of zinc, iron, and copper in patients with pseudoexfoliative cataract, Eur. J. Ophthalmol. 16, 548–553 (2006).PubMedGoogle Scholar
  10. 10.
    O. Çekiç, Copper, lead, cadmium and calcium in cataractous lenses, Ophthalmic Res. 30, 49–53 (1998).CrossRefPubMedGoogle Scholar
  11. 11.
    A.A. Swanson and A.W. Truesdale, Elemental analysis in normal and cataractous human lens tissue, Biochem. Biophys. Res. Commun. 45, 1488–1496 (1971).CrossRefPubMedGoogle Scholar
  12. 12.
    E. Aydin, T. Cumurcu, F. Özuğurlu, H. Özyurt, S. Sahinoglu, D. Mendil and E. Hasdemir, Levels of iron, zinc, and copper in aqueous humor, lens, and serum in nondiabetic and diabetic patients. Their relation to cataract, Biol. Trace Element Res. 108, 33–41 (2005).CrossRefGoogle Scholar
  13. 13.
    W. Frenzel, Mercury films on a glassy carbon support: Attributes and problems, Analytica Chimica Acta. 273, 123–137 (1993).CrossRefGoogle Scholar
  14. 14.
    J. Wang, Stripping Analysis—Principles, Instrumentation and Applications, VCH, Deerfield Beach, FL, pp.127–128 (1985).Google Scholar
  15. 15.
    P.M. Bersier, J. Howell and C. Bruntlett, Advanced Electroanalytical Techniques vs. Atomic Absorption Spectrometry, Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry in Environmental Analysis, Analyst. 119, 219–232 (1994).CrossRefGoogle Scholar
  16. 16.
    W. Davison, Ultra-trace analysis of soluble zinc, cadmium, copper and lead in Windermere lake water using anodic stripping voltammetry and atomic absorption spectroscopy, Freshwater Biology. 10, 223–227 (1980).CrossRefGoogle Scholar
  17. 17.
    C-J. Horng, Simultaneous determination of urinary zinc, cadmium, lead and copper concentrations in steel production workers by differential-pulse anodic stripping voltammetry, Analyst. 121, 1511–1514 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    J.Wang, U.A.Kirgöz and J.Lu, Stripping voltammetry with the electrode material acting as a “built in” internal standard, Electrochemistry Commun. 3, 703–706 (2001).CrossRefGoogle Scholar
  19. 19.
    S.P. Gartaganis, C.D. Georgakopoulos, E.K. Mela, A. Exarchou, N. Ziouti, M. Assouti and D.H. Vynios, Matrix metalloproteinases and their inhibitors in exfoliation syndrome, Ophthalmic Res. 34, 165–171 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    G.G. Koliakos, A.G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis and A. Ringvold, Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome, Am. J. Ophthalmol. 134, 879–883 (2002).CrossRefPubMedGoogle Scholar
  21. 21.
    S.P. Gartaganis, C.D. Georgakopoulos, N.E. Patsoukis, S.S. Gotsis, V.S. Gartaganis and C.D. Georgiou, Glutathione and lipid peroxide changes in pseudoexfoliation syndrome, Curr. Eye Res. 30, 647–651 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    S.P. Gartaganis, N.E. Patsoukis, D.K. Nikolopoulos and C.D. Georgiou, Evidence for oxidaive stress in lens epithelial cells in pseudoexfoliation syndrome, Eye. 21, 1406–1411 (2007).CrossRefPubMedGoogle Scholar
  23. 23.
    R. Yağci, A. Gürel, I. Ersöz, U.C. Keskin, I.F. Hepşen, S. Duman and R. Yiğitoğlou, Oxidative stress and protein oxidation in pseudoexfoliation syndrome, Curr. Eye Res. 31, 1029–1032 (2006).CrossRefPubMedGoogle Scholar
  24. 24.
    P. Bjerregaard, E. Dewailly, A.t Gilman, J.C. Hansen, B.J. Lagerkvist, E. Lund, E. Nieboer, J.Ø. Odland, J. van Oostdam and H.C. Wulf, Pollution and Human Health, AMAP Assessment report: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp.775–837 (1998).Google Scholar
  25. 25.
    S.L. Marklund, Superoxide dismutase in human tissue cells and extracellular fluids, clinical implications, in Free radicals, aging and degenerative disease, J.E. Johnson, R. Walford, D. Harman and J. Miguel, eds., New York: Alan R Liss, pp. 509–526 (1986).Google Scholar
  26. 26.
    A.M. Preston, Cigarette smoking—nutritional implications, Prog. Food Nutr. Sci. 15, 183–217 (1991).PubMedGoogle Scholar
  27. 27.
    O. Çekiç, Effect of cigarette smoking on copper, lead, and cadmium accumulation in human lens, Br. J. Ophthalmol. 82, 186–188 (1998).CrossRefPubMedGoogle Scholar
  28. 28.
    Osteryoung J, O’Dea JJ (1986) Square-wave voltammetry. In: Bard AJ (ed) Electroanalytical Chemistry, vol 14. Marcel Dekker, New York, p 209Google Scholar
  29. 29.
    I. Gustavsson and L. Hansson, Intercomparison studies of stripping voltammetry and atomic absorption spectrometry of Zn, Cd, Pb, Cu, Ni and Co in Baltic sea water, Intern. J. Environ. Anal. Chem. 17, 57–72 (1984).CrossRefGoogle Scholar
  30. 30.
    J.C. Erie, J.A. Butz, J.A. Good, E.A. Erie, M.F. Burritt and J.D. Cameron, Heavy metal concentrations in human eyes, Am. J. Ophthalmol. 139, 888–893 (2005).CrossRefPubMedGoogle Scholar
  31. 31.
    B.R. Grubb, G.E. DuVal, J.S. Morris and P.J. Bentley, Accumulation of cadmium by the eye with special reference to the lens, Toxicol. Applied Pharm. 77, 444–450 (1985).CrossRefGoogle Scholar
  32. 32.
    A.Z. Abu Zuhri and W. Voelter, Applications of adsorptive stripping voltammetry for the trace analysis of metals, pharmaceuticals and biomolecules (review), Fresenius J. Anal. Chem. 360, 1–9 (1998).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Vassiliki S. Panteli
    • 1
  • Dimitra G. Kanellopoulou
    • 2
  • Sotirios P. Gartaganis
    • 1
  • Petros G. Koutsoukos
    • 2
    Email author
  1. 1.Department of Ophthalmology, School of MedicineUniversity of PatrasPatrasGreece
  2. 2.Department of Chemical Engineering, Laboratory of Inorganic and Analytical ChemistryUniversity of Patras and FORTH-ICEHTPatrasGreece

Personalised recommendations