Biological Trace Element Research

, Volume 129, Issue 1–3, pp 78–87

Determination of Copper and Iron in Biological Samples of Viral Hepatitis (A–E) Female Patients

  • Hassan Imran Afridi
  • Tasneem Gul Kazi
  • Naveed Gul Kazi
  • Mohammad Khan Jamali
  • Raja Adil Sarfaraz
  • Mohammad Balal Arain
  • Ghulam Abbas Kandhro
  • Abdul Qadir Shah
  • Jamil Ahmed Baig
  • Nusrat Jalbani
  • Rehana Ansari
Article

Abstract

There is accumulative evidence that the metabolism of iron and copper is altered in viral hepatic diseases, and these nutrients might have specific roles in their pathogenesis and progress. The aim of present study was to compare the level of copper (Cu) and iron (Fe) in biological samples (serum, urine, and scalp hair) of female patients suffering from different viral hepatitis (A, B, C, D, and E; n = 253) of age range 31–45 years. For comparative study, 95 healthy females of the same age group residing in the same city were selected. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry, prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked by using certified reference materials (CRMs) and with those values obtained by conventional wet acid digestion method on same CRMs. The results of this study showed that the mean values of Cu and Fe were higher in sera and scalp hair samples of hepatitis patients than age-matched control subjects, while the difference was significant (p < 0.001), in the cases of viral hepatitis B and viral hepatitis C as compared to viral hepatitis A, D, and E. The urinary levels of these elements were found higher in the hepatitis patients than in the age-matched healthy controls (p < 0.05). These results are consistent with literature-reported data, confirming that hepatic iron and copper overload can directly cause lipid peroxidation and eventually hepatic damage.

Keywords

Iron Copper Hepatitis (A–E) Female Atomic absorption spectrophotometer 

References

  1. 1.
    Bhaskaram P (2002) Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev 60:40–45CrossRefGoogle Scholar
  2. 2.
    Meng Z, Zhang Q (2006) Oxidative damage of dust storm fine particles instillation on lungs, hearts and livers of rats. J Environ Toxicol Pharmacol 22(3):277–282CrossRefGoogle Scholar
  3. 3.
    Jain SK, Pemberton PW, Smith A, McMahon RF, Burrows PC, Aboutwerat A, Warnes TW (2002) Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J Hepatol 36:805–811PubMedCrossRefGoogle Scholar
  4. 4.
    Loguercio C, Federico A (2003) Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med 34:1–10PubMedCrossRefGoogle Scholar
  5. 5.
    Robinson WS (1985) Hepatitis B virus and hepatitis D virus. In: Mandell GL, Bennet JE, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1406–1439Google Scholar
  6. 6.
    Alter MJ, Margolis HS, Krawczynski K, Hudson EN, Mares A, Alexander WJ, Hu PY, Miller JK, Gerber MA, Sampliner RF (1992) The natural history of community acquired hepatitis C in the United States. N Engl J Med 327:1899–1905PubMedGoogle Scholar
  7. 7.
    Brown EA, Ticehurst J, Lemon SM (1994) Immunopathology of hepatitis A and hepatitis E infection. In: Thomas HC, Waters 3 (eds) Immunology of liver diseases. Kluwer Academic, Dordrecht, pp 11–17Google Scholar
  8. 8.
    Mastousek AJ, Burguera JL, Burguera M, Anez N (1993) Changes in total content of iron, copper and zinc in serum, heart, Liver, spleen and skeletal muscle tissues of rats infected with Trypanosoma cruzi. Biol Trace Elem Res 37:51–69CrossRefGoogle Scholar
  9. 9.
    Cousins RJ (1995) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–246Google Scholar
  10. 10.
    Hatano R, Ebara M, Fukuda H, Yoshikawa M, Sugiura N, Kondo F, Yukawa M, Saisho H (2000) Accumulation of Cu in the liver and hepatic injury in chronic hepatitis C. J Gastroenterol Hepatol 15(7):786–791PubMedCrossRefGoogle Scholar
  11. 11.
    Bonkovsky HL (1997) Therapy of hepatitis C. other options. J Hepatol 26:143–151CrossRefGoogle Scholar
  12. 12.
    Fabris C, Toniutto P, Scott CA (2001) Serum iron indices as a measure of iron deposits in chronic hepatitis C. J Clin Chim Acta 304:49–55CrossRefGoogle Scholar
  13. 13.
    Van DHT, Friedlander L, Fagiuoli S, Wright HI, Irish W, Gavaler JS (1994) Response to interferon alpha therapy is influenced by the iron content of the liver. J Hepatol 20:410–415CrossRefGoogle Scholar
  14. 14.
    Roeckel IE (2000) Commentary: Iron metabolism in hepatitis C infection. Ann Clin Lab Sci 30(2):163–166PubMedGoogle Scholar
  15. 15.
    Zhu H, Luo HJ, Deng H, Lei L, Zhang SH (2007) Establishing a high iron model and observing indexes related to iron metabolism in mice. J Clin Rehabil Tissue Eng Res 11(8):1593–1597Google Scholar
  16. 16.
    Kebbekus BB (2003) Sample preparation techniques in analytical chemistry. In: Mitra S, Winefordner JD (eds) A series of monographs on analytical chemistry and its applications (Chapter 5). Wiley, New YorkGoogle Scholar
  17. 17.
    Zakrgynska-Fontaine V, Dore JC, Ojasoo T, Poirier-Duchene F, Viel C (1998) Study of the age and sex dependence of trace elements in hair by correspondence analysis. Biol Trace Elem Res 61:151–68PubMedCrossRefGoogle Scholar
  18. 18.
    Smith EE, Arsenault EA (1996) Microwave-assisted sample preparation in analytical chemistry. Talanta 43:1207–1268PubMedCrossRefGoogle Scholar
  19. 19.
    Afridi HI, Kazi TG, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Essential trace and toxic element distribution in the scalp hair of pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34PubMedCrossRefGoogle Scholar
  20. 20.
    World Health Organization (1997) Hepatitis C: global prevalence. Epidemiol Rec 72:341–344Google Scholar
  21. 21.
    Hsu HH, Feinstone SM, Hoofnagle JH (1995) Acute viral hepatitis. In: Mandell GL, Bennett IE, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1136–1153Google Scholar
  22. 22.
    Krawitt EL (1995) Chronic hepatitis. In: Mandell GL, Bennett IE, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1153–1159Google Scholar
  23. 23.
    Afridi HI, Kazi TG, Arain MB, Jamali MK, Jalbani N (2007) Determination of Cd and Pb in biological samples by three ultrasonic-based samples treatment procedures followed by electrothermal atomic absorption spectrophotometer. J AOAC Int 90(2):470–478PubMedGoogle Scholar
  24. 24.
    Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369:52–60PubMedCrossRefGoogle Scholar
  25. 25.
    Pramoolsinsap C, Promvanit N, Komindr S, Lerdverasirikul P, Srianujata S (1994) Serum trace metals in chronic viral hepatitis and hepatocellular carcinoma in Thailand. J Gastroenterol 29:610–615PubMedCrossRefGoogle Scholar
  26. 26.
    Reid AE (2001) Nonalcoholic steatohepatitis. J Gastroenterol 121:710–723CrossRefGoogle Scholar
  27. 27.
    Bowden DS, Moaven LD, Locarnini SA (1996) New hepatitis viruses: are there enough letters in the alphabet? Med J Aust 164:87–89PubMedGoogle Scholar
  28. 28.
    Bacon BR, Farahvash MJ, Janney CG (1994) Nonalcoholic steatohepatitis: an expanded clinical entity. J Gastroenterol 107:1103–1109Google Scholar
  29. 29.
    Di Bisceglie AM, Axiotis CA, Hoofnagle JH, Bacon BR (1992) Measurements of iron status in patients with chronic hepatitis. J Gastroenterol 102:2108–2113Google Scholar
  30. 30.
    Bonkovsky HL, Banner BF, Rothman AL (1997) Iron and chronic viral hepatitis. J Hepatol 25:759–768CrossRefGoogle Scholar
  31. 31.
    Bonkovsky HL, Javaid Q, Tortorelli K (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31:421–429PubMedCrossRefGoogle Scholar
  32. 32.
    Pietrangelo A (1998) Iron, oxidative stress and liver fibrogenesis. J Hepatol 28:8–13PubMedCrossRefGoogle Scholar
  33. 33.
    Silvia IS, Perez RM, Oliveira PV, Cantagalo MI, Dantas E, Sisti C, Figueiredo-Mendes C, Lanzoni VP, Silva AE, Ferraz MLG (2005) Iron overload in patients with chronic hepatitis C virus infection: clinical and histological study. J Gastroentrol Hepatol 20:243–248CrossRefGoogle Scholar
  34. 34.
    Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Invest 32:70–78PubMedCrossRefGoogle Scholar
  35. 35.
    Milne DB (1999) Trace elements. In: Burtis CA, Ashwood ER (eds) Tietz textbook of clinical chemistry. 3rd edn. WB Saunders, Philadelphia, PA, pp 1029–1056Google Scholar
  36. 36.
    Vulpe CD, Packman S (1995) Cellular copper transport. Annu Rev Nutr 15:293–322PubMedCrossRefGoogle Scholar
  37. 37.
    Britton RS (1996) Metal-induced hepatotoxicity. Sem Liv Dis 16:3–12CrossRefGoogle Scholar
  38. 38.
    Tanasescu C, Baldescu R, Chirulescu Z (1996) Interdependence between Zn and Cu serum concentrations and serum immunoglobulins in liver diseases. Rom J Int Med 34:217–224Google Scholar
  39. 39.
    Hatano R (2000) Accumulation of copper in liver and hepatic injury in chronic hepatitis C. J Gastroenterol Hepatol 15:786–791PubMedCrossRefGoogle Scholar
  40. 40.
    Kalkan A, Bulut V, Avci S, Celik I, Bingol NK (2002) Trace elements in viral hepatitis. J Trace Elem Med Biol 16:227–230PubMedCrossRefGoogle Scholar
  41. 41.
    Standstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61:6215–6245Google Scholar
  42. 42.
    Cunningham-Rumdles S, Ahrn S, Abuav-Nussbaum R, Dnistrian A (2002) Development of immuno competence: Role of micronutrients and microorganisms. Nutr Rev 60:68–72CrossRefGoogle Scholar
  43. 43.
    Sakurai H, Fukudome A, Tawa R (1992) Unusual accumulation of copper related to induction of metallothionein in the liver of LEC rats. Biochem Biophys Res Commun 184:1393–1397PubMedCrossRefGoogle Scholar
  44. 44.
    Sakurai H, Satoh H, Hatanaka A (1994) Unusual generation of hydroxyl radicals in hepatic copper-metallothionein of LEC (Long Evans Cinnamon) rats in the presence of hydrogen peroxide. Biochem Biophys Res Commun 199:313–318PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki KT, Rui M, Ueda J, Ozawa T (1996) Production of hydroxyl radicals by copper-containing metallothionein: roles as prooxidant. Toxicol Appl Pharmacol 141:231–237PubMedGoogle Scholar
  46. 46.
    Sokol RJ, Devereaux MW, O’Brien K, Khandwala RA, Loehr JP (1993) Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. J Gastroenterol 105:178–187Google Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Hassan Imran Afridi
    • 1
  • Tasneem Gul Kazi
    • 1
  • Naveed Gul Kazi
    • 2
  • Mohammad Khan Jamali
    • 1
  • Raja Adil Sarfaraz
    • 1
  • Mohammad Balal Arain
    • 1
  • Ghulam Abbas Kandhro
    • 1
  • Abdul Qadir Shah
    • 1
  • Jamil Ahmed Baig
    • 1
  • Nusrat Jalbani
    • 1
  • Rehana Ansari
    • 1
  1. 1.National Center of Excellence in Analytical ChemistrySindh UniversityJamshoroPakistan
  2. 2.Liaqut University of Medical and Health SciencesJamshoroPakistan

Personalised recommendations