Biological Trace Element Research

, Volume 129, Issue 1–3, pp 58–64 | Cite as

The Role of Arginine–Nitric Oxide Pathway in Patients with Alzheimer Disease

  • Huseyin VuralEmail author
  • Burcu Sirin
  • Nigar Yilmaz
  • Ibrahim Eren
  • Namik Delibas


There is a reciprocal regulation of arginase and nitric oxide synthase in l-arginine-metabolizing pathways. There are various evidences of the role of nitric oxide in several neuropsychiatric disorders including Alzheimer’s disease. However, there is no study that has investigated the role of arginase as an important part of the arginine regulatory system affecting nitric oxide synthase activity in Alzheimer’s disease. This study aims to investigate arginase, manganese (a cofactor of arginase), and total nitrite levels (a metabolite of NO) and their relationship to the arginine–NO pathway in patients with Alzheimer’s disease. Arginase activities, Mn, and total nitrite levels were measured in plasma from 47 patients with Alzheimer’s disease and 43 healthy control subjects. Plasma arginase activities and manganese were found to be significantly lower and total nitrite level higher in patients with Alzheimer’s disease compared with controls. Our results suggest that the arginine–NO pathway is involved in the pathogenesis of Alzheimer’s disease.


Alzheimer’s disease Arginase Manganese Nitric oxide 


  1. 1.
    Silvestrelli G, Lanari A, Parnetti L, Tomassoni D, Amenta F (2006) Treatment of Alzheimer’s disease: from pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev 127(2):158–165PubMedCrossRefGoogle Scholar
  2. 2.
    Durany N, Munch G, Michel T, Riederer P (1999) Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):68–73PubMedGoogle Scholar
  3. 3.
    Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, de La Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33(3):450–458PubMedCrossRefGoogle Scholar
  4. 4.
    Delibas N, Ozcankaya R, Altuntas I (2002) Clinical importance of erythrocyte malondialdehyde levels as a marker for cognitive deterioration in patients with dementia of Alzheimer type: a repeated study in 5-year interval. Clin Biochem 35(2):137–141PubMedCrossRefGoogle Scholar
  5. 5.
    Dawson VL, Dawson TM (1996) Nitric oxide actions in neurochemistry. Neurochem Int 29:97–110PubMedCrossRefGoogle Scholar
  6. 6.
    Das I, Khan NS, Puri BK, Sooranna SR, de Belleroche J, Hirsch SR (1995) Elevated platelet calcium mobilization and nitric oxide synthase activity may reflect abnormalities in schizophrenic brain. Biochem Biophys Res Commun 212:375–380PubMedCrossRefGoogle Scholar
  7. 7.
    Corzo L, Zas R, Rodriguez S, Fernandez-Novoa L, Cacabelos R (2007) Decreased levels of serum nitric oxide in different forms of dementia. Neurosci Lett 420(3):263–267PubMedCrossRefGoogle Scholar
  8. 8.
    Hoekstra R, Fekkes D, Pepplinkhuizen L, Loonen AJ, Tuinier S, Verhoeven WM (2006) Nitric oxide and neopterin in bipolar affective disorder. Neuropsychobiology 54(1):75–81PubMedCrossRefGoogle Scholar
  9. 9.
    Cardenas A, Moro MA, Hurtado O, Leza JC, Lizasoain I (2005) Dual role of nitric oxide in adult neurogenesis. Brain Res Brain Res Rev 50(1):1–6PubMedCrossRefGoogle Scholar
  10. 10.
    Lee BH, Kim YK (2008) Reduced plasma nitric oxide metabolites before and after antipsychotic treatment in patients with schizophrenia compared to controls. Schizophr Res 104(1–3):36–43PubMedCrossRefGoogle Scholar
  11. 11.
    Albina JE, Mills CD, Henry WL, Caldwell MD (1990) Temporal expression of different pathways of L-arginine metabolism in healing wounds. J Immunol 144:3877–3880PubMedGoogle Scholar
  12. 12.
    Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114:107–132PubMedCrossRefGoogle Scholar
  13. 13.
    Brock AA, Chapman SA, Ulman EA, Wu G (1994) Dietary manganese deficiency decreases rat hepatic arginase activity. J Nutr 124:340–344PubMedGoogle Scholar
  14. 14.
    Diez AM, Campo ML, Soler G (1992) Trypsin digestion of arginase: evidence for a stable confirmation manganese directed. Int J Biochem 24:1925–1932PubMedCrossRefGoogle Scholar
  15. 15.
    Durak I, Ozturk HS, Elgun S, Cimen MYB, Yalcın S (2001) Erythrocyte nitric oxide metabolism in patients with chronic renal failure. Clin Nephrol 55:460–464PubMedGoogle Scholar
  16. 16.
    Huang LW, Chang KL, Chen CJ, Liu HW (2001) Arginase levels are increased in patients with rheumatoid arthritis. Kaohsiung J Med Sci 17:358–363PubMedGoogle Scholar
  17. 17.
    Yanik M, Vural H, Kocyigit A, Tutkun H, Zoroglu SS, Herken H, Savas HA, Koylu A, Akyol O (2003) Is the arginine–nitric oxide pathway involved in the pathogenesis of schizophrenia? Neuropsychobiology 47:61–65PubMedCrossRefGoogle Scholar
  18. 18.
    Yanik M, Vural H, Tutkun H, Zoroglu SS, Savas HA, Herken H, Kocyigit A, Keles H, Akyol O (2004) The role of the arginine–nitric oxide pathway in the pathogenesis of bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci 254(1):43–47PubMedCrossRefGoogle Scholar
  19. 19.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944PubMedGoogle Scholar
  20. 20.
    Moshage H, Kok B, Huizenga JR, Jansen PL (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41:892–896PubMedGoogle Scholar
  21. 21.
    Geyer JW, Dabich D (1971) Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem 39:412–417PubMedCrossRefGoogle Scholar
  22. 22.
    Brodie KG, Routh MW (1984) Trace analysis of lead in blood, aluminium and manganese in serum and chromium in urine by graphite furnace atomic absorption spectrometry. Clin Biochem 17:19–26PubMedCrossRefGoogle Scholar
  23. 23.
    Cacabelos R, Fernandez-Novoa L, Lombardi V, Corzo L, Pichel V, Kubota Y (2003) Cerebrovascular risk factors in Alzheimer’s disease: brain hemodynamics and pharmacogenomic implications. Neurol Res 25(6):567–580PubMedCrossRefGoogle Scholar
  24. 24.
    De Servi B, La Porta CA, Bontempelli M, Comolli R (2002) Decrease of TGF-beta1 plasma levels and increase of nitric oxide synthase activity in leukocytes as potential biomarkers of Alzheimer’s disease. Exp Gerontol 37(6):813–821PubMedCrossRefGoogle Scholar
  25. 25.
    Navarro JA, Molina JA, Jiménez-Jiménez FJ, Benito-Leon J, Orti-Pareja M, Gasalla T, Cabrera-Valdivia F, Vargas C, de Bustos F, Arenas J (1996) Cerebrospinal fluid nitrate levels in patients with Alzheimer’s disease. Acta Neurol Scand 94(6):411–414PubMedCrossRefGoogle Scholar
  26. 26.
    Milstien S, Sakai N, Brew BJ, Krieger C, Vickers JH, Saito K, Heyes MP (1994) Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases. J Neurochem 63(3):1178–1180PubMedCrossRefGoogle Scholar
  27. 27.
    Folin M, Baiguera S, Gallucci M, Conconi MT, Di Liddo R, Zanardo A, Parnigotto PP (2005) A cross-sectional study of homocysteine-, NO-levels, and CT-findings in Alzheimer dementia, vascular dementia and controls. Biogerontology 6(4):255–260PubMedCrossRefGoogle Scholar
  28. 28.
    Selley ML (2003) Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 24(7):903–907PubMedCrossRefGoogle Scholar
  29. 29.
    Fedele E, Raiteri M (1999) In vivo studies of the cerebral glutamate receptor/NO/cGMP pathway. Prog Neurobiol 58(1):89–120PubMedCrossRefGoogle Scholar
  30. 30.
    Torreilles F, Salman-Tabcheh S, Guérin M, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30(2):153–163PubMedCrossRefGoogle Scholar
  31. 31.
    Arlt S, Schulze F, Eichenlaub M, Maas R, Lehmbeck JT, Schwedhelm E, Jahn H, Böger RH (2008) Asymmetrical dimethylarginine is increased in plasma and decreased in cerebrospinal fluid of patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 26(1):58–64PubMedCrossRefGoogle Scholar
  32. 32.
    Jansen A, Lewis S, Cattell V, Cook HT (1992) Arginase is a major pathway of L-arginine metabolism in nephritic glomeruli. Kidney Int 42:1107–1112PubMedCrossRefGoogle Scholar
  33. 33.
    Sadasivudu B, Rao TI (1976) Studies on functional and metabolic role of urea cycle intermediates in brain. J Neurochem 27:785–794PubMedCrossRefGoogle Scholar
  34. 34.
    Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, Schweighoffer F, Desire L (2008) Etazolate, a neuroprotective drug linking GABA (A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 106(1):392–404PubMedCrossRefGoogle Scholar
  35. 35.
    Rissman RA, De Blas AL, Armstrong DM (2007) GABA(A) receptors in aging and Alzheimer’s disease. J Neurochem 103(4):1285–1292PubMedCrossRefGoogle Scholar
  36. 36.
    Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Parkinson’s Dis Dement Sect 3(4):231–258Google Scholar
  37. 37.
    Gerhardsson L, Lundh T, Minthon L, Londos E (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):508–515PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Huseyin Vural
    • 1
    Email author
  • Burcu Sirin
    • 1
  • Nigar Yilmaz
    • 1
  • Ibrahim Eren
    • 2
  • Namik Delibas
    • 1
  1. 1.Department of Biochemistry, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Psychiatry, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations