Biological Trace Element Research

, Volume 128, Issue 3, pp 258–268 | Cite as

Cytotoxic and Genotoxic Effects of cis-Tetraammine(oxalato)Ruthenium(III) Dithionate on the Root Meristem Cells of Allium cepa

  • Flávia de Castro Pereira
  • Cesar Augusto Sam Tiago Vilanova-Costa
  • Aliny Pereira de Lima
  • Alessandra de Santana Braga Barbosa Ribeiro
  • Hugo Delleon da Silva
  • Luiz Alfredo Pavanin
  • Elisângela de Paula Silveira-Lacerda


Ruthenium complexes have attracted much attention as possible building blocks for new transition-metal-based antitumor agents. The present study examines the mitotoxic and clastogenic effects induced in the root tips of Allium cepa by cis-tetraammine(oxalato)ruthenium(III) dithionate {cis-[Ru(C2O2)(NH3)4]2(S2O6)} at different exposure durations and concentrations. Correlation tests were performed to determine the effects of the time of exposure and concentration of ruthenium complex on mitotic index (MI) and mitotic aberration index. A comparison of MI results of cis-[Ru(C2O2)(NH3)4]2(S2O6) to those of lead nitrate reveals that the ruthenium complex demonstrates an average mitotic inhibition eightfold higher than lead, with the frequency of cellular abnormalities almost fourfold lower and mitotic aberration threefold lower. A. cepa root cells exposed to a range of ruthenium complex concentrations did not display significant clastogenic effects. Cis-tetraammine(oxalato)ruthenium(III) dithionate therefore exhibits a remarkable capacity to inhibit mitosis, perhaps by inhibiting DNA synthesis or blocking the cell cycle in the G2 phase. Further investigation of the mechanisms of action of this ruthenium complex will be important to define its clinical potential and to contribute to a novel and rational approach to developing a new metal-based drug with antitumor properties complementary to those exhibited by the drugs already in clinical use.


Cis-tetraammine(oxalato)ruthenium(III) dithionate Cytotoxicity Genotoxicity Allium cepa Ruthenium compounds 



This work was supported by the non-profit institution Research and Projects Financing (FINEP; grant no. 01.06.0941.00/CT-Saúde to Elisângela de Paula Silveira-Lacerda) and by the Brazilian National Counsel of Technological and Scientific Development (CNPq) through fellowships to Flávia de Castro Pereira (grant no. 381302/2007-5), Cesar Augusto Sam Tiago Vilanova-Costa (grant no. 381303/2007-1), and Aliny Pereira de Lima (grant no. 370646/2007-0).

Funding sources

There are no financial or personal interests that might be viewed as inappropriate influences on this work.

Ethical approval

No studies involving human or experimental animals were conducted in this work. Only meristematic cells of the onion (A. cepa) were used. The techniques employed were suggested as models for environmental monitoring (Fiskesjö 1985)


  1. 1.
    Menezes CSR, Costa LCGP, Ávila VMR, Ferreira MJ, Vieira CU, Pavanin LA, Homsi-Brandeburgo MI, Hamaguchi A, Silveira-Lacerda EP (2007) Analysis in vivo of antitumor activity, cytotoxicity and interaction between plasmid DNA and the cis-dichlorotetraammineruthenium(III) chloride. Chem–Biol Interact 167:116–124PubMedCrossRefGoogle Scholar
  2. 2.
    Brabec V, Nováková O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9:111–122PubMedCrossRefGoogle Scholar
  3. 3.
    Wernyj RP, Morin PJ (2004) Molecular mechanisms of platinum resistance: still searching for the Achilles’ heel. Drug Resist Updat 7:227–232PubMedCrossRefGoogle Scholar
  4. 4.
    Karki SS, Thota S, Darj SY, Balzarini J, Clercq E (2007) Synthesis, anticancer, and cytotoxic activities of some mononuclear Ru(II) compounds. Bioorganic Med Chem 15:6632–6641CrossRefGoogle Scholar
  5. 5.
    Wong RD, Giandomenico CM (1999) Current status of platinum based antitumor drugs. Chem Rev 99:2451–2466PubMedCrossRefGoogle Scholar
  6. 6.
    Kratz F, Hartmann M, Keppler B, Messori L (1994) The binding properties of two antitumor ruthenium(III) complexes to apotransferrin. J Biol Chem 269(4):2581–2588PubMedGoogle Scholar
  7. 7.
    Hartmann M, Sommer ME, Keppler BK, Kratz F, Einhäuser TJ (1995) New tumor-inhibiting ruthenium compounds: investigations into their mode of action in human blood plasma and binding towards DNA. J Inorg Biochem 59:214CrossRefGoogle Scholar
  8. 8.
    Zeller WJ, Fruhauf S, Chen G, Keppler BK, Frei E, Kaufmann M (1991) Chemoresistance in rat ovarian tumours. Eur J Cancer 27:62–67PubMedCrossRefGoogle Scholar
  9. 9.
    Coluccia M, Sava G, Loseto F, Nassi A, Boccarelli A, Giordano D, Alessio E, Mestroni G (1993) Antileukemic action of RuCl2(DMSO)4 isomers and prevention of brain involvement on P388 leukemia and on P388/DDP subline. Eur J Cancer 29A:1873–1879PubMedCrossRefGoogle Scholar
  10. 10.
    Clarke MJ (2003) Ruthenium metallopharmaceuticals. Coord Chem Rev 236:209–233CrossRefGoogle Scholar
  11. 11.
    Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium antimetastatic agents. Curr Top Med Chem 4:1525–1535PubMedCrossRefGoogle Scholar
  12. 12.
    Allardyce CS, Dyson PJ, Ellis DJ, Salter PA, Scopelliti R (2003) Synthesis and characterisation of some water soluble ruthenium(II)–arene complexes and an investigation of their antibiotic and antiviral properties. J Organomet Chem 668:35–42CrossRefGoogle Scholar
  13. 13.
    Grguric-Sipka SR, Vilaplana RA, Pérez JM, Fuertes MA, Alonso C, Alvarez Y, Sabo TJ, González-Vílchez F (2003) Synthesis, characterization, interaction with DNA and cytotoxicity of the new potential antitumour drug cis-K[Ru(eddp)Cl2]. J Inorg Biochem 97:215–220PubMedCrossRefGoogle Scholar
  14. 14.
    Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutations—a brief historical ackground on their use for screening and monitoring environmental chemicals. Mutation Res 426:107–112PubMedGoogle Scholar
  15. 15.
    Türkoğlu S (2008) Evaluation of genotoxic effects of sodium propionate, calcium propionate and potassium propionate on the root meristem cells of Allium cepa. Food Chem Toxicol 46(6):2035–2041PubMedCrossRefGoogle Scholar
  16. 16.
    Yi H, Wu L, Jiang L (2007) Genotoxicity of arsenic evaluated by Allium-root micronucleus assay. Sci Total Environ 383:232–236PubMedCrossRefGoogle Scholar
  17. 17.
    Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471CrossRefGoogle Scholar
  18. 18.
    Ma TH (1999) The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China. Mutat Res 426:103–106PubMedGoogle Scholar
  19. 19.
    Fiskejö G (1987) The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res 197:243–260Google Scholar
  20. 20.
    Fiskejö G (1993) Allium Test I: A 2e3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L.). Environ Toxicol Water Qual 8:461–470CrossRefGoogle Scholar
  21. 21.
    El-Ghamery AA, El-Nahas AI, Mansour MM (2000) The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia 65:277–287Google Scholar
  22. 22.
    Van’t Hof J (1968) The action of IAA and kinetin on the mitotic cycle of proliferative and stationary phase excised root meristem. Exp Cell Res 51:167PubMedCrossRefGoogle Scholar
  23. 23.
    Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239Google Scholar
  24. 24.
    Silveira-Lacerda EP (2003) Antitumoral evaluation of cis-[RuCl2(NH3)4]Cl using tumoral, human and mouse cells lineages. 67 f. Doctoral thesis, Federal University of Uberlândia, Uberlândia, Minas Gerais, BrazilGoogle Scholar
  25. 25.
    Frasca DR, Gehrig LE, Clarke MJ (2001) Cellular effects of transferrin coordinated to [Cl(NH3)5Ru]Cl2 and cis-[Cl2(NH3)4Ru]Cl. J Inorg Biochem 83:139–149PubMedCrossRefGoogle Scholar
  26. 26.
    Carballo M, Vilaplana R, Marquez G, Conde M, Bedoya FJ, Gonzalez-Vilchez F, Sobrino F (1997) A newly synthesized molecule derived from ruthenium cation, with antitumour activity, activates NADPH oxidase in human neutrophils. Biochem J 328:559PubMedGoogle Scholar
  27. 27.
    Dombrowski JE, Bergey DR (2007) Calcium ions enhance systemin activity and play an integral role in the wound response. Plant Science 172:335–344CrossRefGoogle Scholar
  28. 28.
    Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  29. 29.
    Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13:R425PubMedCrossRefGoogle Scholar
  30. 30.
    Leme DM, Marin-Morales MA (2008) Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—a case study. Mutat Res 650:80–86PubMedGoogle Scholar
  31. 31.
    Marcano L, Carruyo L, Del Campo A, Montiel X (2002) Effect of cadmium on the nucleoli of meristematic cells of onion Allium cepa L: an ultrastructural study. Environ Res 88:30–35PubMedCrossRefGoogle Scholar
  32. 32.
    Marcano L, Carruyo I, Del Campo A, Montiel X (2004) Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environ Res 94:221–226PubMedCrossRefGoogle Scholar
  33. 33.
    Ribas G, Surralles J, Marcos R (1996) Maleic hydrazide in cultured human lymphocytes. Mutagenesis 11:221–226PubMedCrossRefGoogle Scholar
  34. 34.
    Rank J, Nielsen MH (1997) Allium cepa anaphase–telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat Res 390:121–127PubMedGoogle Scholar
  35. 35.
    Alvarez-Moya C, Santerre-Lucas A, Zúñiga-González G, Torres-Bugarán O, Padilla-Camberos E, Feria-Velasco A (2001) Evaluation of genotoxic activity of maleic hidrazyde, ethyl methane sulphonate and N-nitroso diethy-lamine in Tradescantia using the Comet assay. Salud Pública Méx 43:6–12CrossRefGoogle Scholar
  36. 36.
    Rank J, Lopez L, Mette H, Moretton J (2002) Genotoxicity of maleic hydrazide, acridine and DEHP in Allium root cells performed by two different laboratories. Hereditas 136:13–18PubMedCrossRefGoogle Scholar
  37. 37.
    Del Campo A, Coletto R (1998) Capacidad genotóxica de la hidrácida maleica (MH) detectada por intercambio de cromátidas hermanas (SCE) y por otros bioensayos en Allium cepa. Ciência 6:7–21Google Scholar
  38. 38.
    Duhr EF, Pendergrass JC, Slevin JT, Haley BE (1993) HgEDTA complex inhibits GTP interactions with the E-site of brain β-tubulin. Toxicol Appl Pharmacol 122:273–280PubMedCrossRefGoogle Scholar
  39. 39.
    Pejchar P, Pleskot R, Schwarzerová K, Martinec J, Valentová O, Novotná Z (2008) Aluminum ions inhibit phospholipase D in a microtubule-dependent manner. Cell Biol Int 32(5):554–556PubMedCrossRefGoogle Scholar
  40. 40.
    Stummann TC, Hareng L, Bremer S (2007) Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells. Toxicology 242:130–143PubMedGoogle Scholar
  41. 41.
    Linde-Arias AR, Inácio AF, Alburquerque C, Freire MM, Moreira JC (2008) Biomarkers in an invasive fish species, Oreochromis niloticus, to assess the effects of pollution in a highly degraded Brazilian River. Sci Total Environ 399(1–3):186–192PubMedGoogle Scholar
  42. 42.
    Majer BJ, Laky B, Knasmüller S, Kassie F (2001) Use of the micronucleus assay with exfoliated epithelial cells as a biomarker for monitoring individuals at elevated risk of genetic damage and in chemoprevention trials. Mutat Res 489:147–172PubMedCrossRefGoogle Scholar
  43. 43.
    Kassie F, Parzefall W, Knasmüller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31PubMedCrossRefGoogle Scholar
  44. 44.
    Uhl M, Plewa MJ, Majer BJ, Knasmüller S (2003) Basic principles of genetic toxicology with an emphasis on plant bioassays, 11–30. In: Maluszynska J, Plewa M (eds) Bioassays in plant cells for improvement of ecosystem and human health. Wydawnictvo Uniwersytetu Ślaskiego, Katowice, p 150Google Scholar
  45. 45.
    Pool-Zobel B, Bub A, Müller H, Wollowski I, Rechkemmer G (1997) Consumption of vegetables reduces genetic damage in humans: first results of a human intervention study with carotenoid rich foods. Carcinogenesis 18:1847–1850PubMedCrossRefGoogle Scholar
  46. 46.
    Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J (2002) Methods of in vitro toxicology. Food Chem Toxicol 40:193–236PubMedCrossRefGoogle Scholar
  47. 47.
    Steinkellner H, Mun-Sik K, Helma C, Ecker S, Ma TH, Kundi M, Knasmüller S (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutagen 31:183–191PubMedCrossRefGoogle Scholar
  48. 48.
    Knasmüller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, Göd R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48PubMedGoogle Scholar
  49. 49.
    Knasmüller S, Stidl R, Sontag G, Wagner K (2008) Investigations concerning the long term effects of dietary factors on human health: current topics, methods and new concepts. Food Chem Toxicol 46:1211–1212PubMedCrossRefGoogle Scholar
  50. 50.
    Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  51. 51.
    Gebel TW (2001) Genotoxicity of arsenical compounds. Int J Hyg Environ Health 203:249–262PubMedCrossRefGoogle Scholar
  52. 52.
    Patlolla AK, Tchounwou PB (2005) Cytogenetic evaluation of arsenic trioxide toxicity in Sprague–Dawley rats. Mutat Res 587:126–133PubMedGoogle Scholar
  53. 53.
    Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science 160:291–299PubMedCrossRefGoogle Scholar
  54. 54.
    Rauser WE (1990) Phytochelatins. Ann Rev Biochem 59:61–86PubMedCrossRefGoogle Scholar
  55. 55.
    Rauser WE (1991) Cadmium-binding peptides from plants. Methods Enzymol 205:319–333PubMedCrossRefGoogle Scholar
  56. 56.
    Rauser WE, Meuwly P (1995) Retention of cadmium in roots of maize seedlings: Role of complexation by phytochelatins and related thiol peptides. Plant Physiology 109:195–202PubMedCrossRefGoogle Scholar
  57. 57.
    Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:697–705PubMedGoogle Scholar
  58. 58.
    Mehra RK, Tran K, Scott GW, Mulchandani P, Saini SS (1996) Ag(I)-binding to phytochelatins. J Inorg Biochem 61:125–142PubMedCrossRefGoogle Scholar
  59. 59.
    Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csöregi E (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18:547–553PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Flávia de Castro Pereira
    • 1
  • Cesar Augusto Sam Tiago Vilanova-Costa
    • 1
  • Aliny Pereira de Lima
    • 1
  • Alessandra de Santana Braga Barbosa Ribeiro
    • 1
  • Hugo Delleon da Silva
    • 1
  • Luiz Alfredo Pavanin
    • 2
  • Elisângela de Paula Silveira-Lacerda
    • 1
  1. 1.Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas–ICB I–Sala 200Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto de QuímicaUniversidade Federal de Uberlândia–UFUUberlândiaBrazil

Personalised recommendations