Biological Trace Element Research

, Volume 125, Issue 3, pp 276–285 | Cite as

Correlation of Toxicity with Lead Content in Root Tip Cells (Allium cepa L.)

  • Ingrid CarruyoEmail author
  • Yusmary Fernández
  • Letty Marcano
  • Xiomara Montiel
  • Zaida Torrealba


The present study determines lead content in onion root tip cells (Allium cepa L.), correlating it with its toxicity. The treatment was carried at 25 ± 0.5°C using aqueous solutions of lead chloride at 0.1, 0.25, 0.50, 0.75, and 1 ppm for 12, 24, 48, and 72 h. For each treatment, a control where the lead solution was substituted by distilled water was included. After treatment, the meristems were fixed with a mixture of alcohol–acetic acid (3:1) and colored according to the technique of Feulgen. Lead content was quantified by graphite furnace absorption atomic spectrometry. The lead content in the roots ranged from 3.25 to 244.72 µg/g dry weight, with a direct relation with the concentration and time of exposure. A significant negative correlation was presented (r = −0.3629; p < 0.01) among lead content and root growth increment, and a positive correlation (r = 0.7750; p < 0.01) with the induction of chromosomic aberrations. In conclusion, lead is able to induce a toxic effect in the exposed roots, correlated with its content.


GFAAS Root cells Lead Toxicity 



This work was financed by the Consejo de Desarrollo Científico y Humanístico de la Universidad del Zulia—Venezuela. We also thank Mr. Johann Salas for his technique assistance.


  1. 1.
    Diaz F, Corey G (1999) Evaluación de riesgo por la exposición a Plomo. Unidad de Toxicología ambiental, Facultad de Medicina, Universidad Autónoma de Luís de Potosí, México y Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, PerúGoogle Scholar
  2. 2.
    US Environmental Protection Agency (2004) Great lakes pollution prevention and toxics reduction, Washington DCGoogle Scholar
  3. 3.
    World Health Organization (1991) Environmental Health CriterionGoogle Scholar
  4. 4.
    Wong C, Li X (2002) Metals heavy in agricultural soils of the Delta of the river Pearl, south of China. Environ Pollut 119:33–44PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia I, Dorronsono C (2002) Contaminación por metales pesados. Edatología 3:47–54Google Scholar
  6. 6.
    Patocka J, Cerny K (2003) Inorganic lead toxicology. Acta Medica (Hradec Kralove) 46:65–72Google Scholar
  7. 7.
    US Environmental Protection Agency (2000) Terms of environment, Washington DCGoogle Scholar
  8. 8.
    Wierzbicka M (1999) Comparation of lead tolerance in Allium cepa whit other plant species. Plant Environ Pollut 104:41–52CrossRefGoogle Scholar
  9. 9.
    Fayiga A, Mo L, Cao X, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 132:289–296PubMedCrossRefGoogle Scholar
  10. 10.
    Wilczek G, Babczynska A, Augustyniak M, Migula P (2004) Relations between and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ Pollut 132:453–61PubMedCrossRefGoogle Scholar
  11. 11.
    Marcano L, Carruyo I, Montiel X, Moreno P (2001) Inhibición de la actividad biosintética nucleolar inducidas por el plomo en meristemos radiculares de cebolla (Allium cepa. L). Boletín del Centro de Investigaciones Biológicas 35:65–81Google Scholar
  12. 12.
    Bodenseewerk Z (1984) Analytical techniques for graphite furnace atomic absorption in spectrophotometry Perkin-Elmer GMGH, Veberlinge, Republic Federal of GermanyGoogle Scholar
  13. 13.
    Fiskesjo G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112PubMedCrossRefGoogle Scholar
  14. 14.
    Wierzbicka M (1995) How lead loses its toxicity to plants. Acta Soc Bot Pol 64:81–90Google Scholar
  15. 15.
    Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips ultrastructural studies. Plant Sci 133:105–119CrossRefGoogle Scholar
  16. 16.
    Michalak E, Wierzbicka M (1998) Differences in lead tolerant between Allium cepa plant developing from seed and bulbs. Plant Soil 199:251–260CrossRefGoogle Scholar
  17. 17.
    Skowronska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127CrossRefGoogle Scholar
  18. 18.
    Lock K, Janssen C (2002) Multi-generation toxicity of zinc, cadmium, copper and lead to the potworm Enchytraeus albidus. Belgium Environ Pollut 117:82–92Google Scholar
  19. 19.
    López-Saéz L, Giménez G, Gonzalez, A (1966) Duration of the division cycle and its dependence on temperature. Zeits Zellforsh 75:591–600CrossRefGoogle Scholar
  20. 20.
    Lane SD, Martin ES, Garrod J (1978) Lead toxicity effects on indole-3-acetic acid-induced cell elongation. Plants 144:79–84CrossRefGoogle Scholar
  21. 21.
    Chanda SV, Singh YD (1997) Changes in peroxidase and IAA oxidase activities during wheat grain development. Plant Physiol Biochem 35:245–250Google Scholar
  22. 22.
    Wayland M, Bollinger T (1999) Lead exposure and poisoning in bald eagles and golden eagles in the Canadian Prairie Provinces. Environ Pollut 104:341–350CrossRefGoogle Scholar
  23. 23.
    Kalas J, Steinnes E, Lierhage S (2000) Lead exposure of small herbivorous vertebrates from atmospheric pollution. Environ Pollut 107:21–29PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez N, Beiras B (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–271PubMedCrossRefGoogle Scholar
  25. 25.
    Ceruti R, Shisleni G (2002) Wild rats as monitors of environmental lead contamination in the urban area of Milan, Italia. Environ Pollut 86:1–4Google Scholar
  26. 26.
    Marcano L, Carruyo I, Montiel X, Bracho M, Soto L (1999) Valoración del efecto toxico del cadmio en células meristematicas de cebolla Allium cepa L. Rev Fac Agron LUZ Venezuela 16:476–487Google Scholar
  27. 27.
    Donghua L, Wusheng J, Wei W, Fegmei Z, Cheng L (1994) Effects of lead on root growth, cell division, and nucleolus of Allium cepa. Environ Pollut 117:255–259Google Scholar
  28. 28.
    Gomürgen AN (2005) Cytological effect of the potassium metabisulphite and potassium nitrate food preservative on root tips of Allium cepa L. Cytologia 70:119–128CrossRefGoogle Scholar
  29. 29.
    Wise P, Leonard C, Patiemo R (1992) Clastogenicity of lead chromate particles in hamster and human cells. Mutat Res 278:69–79PubMedCrossRefGoogle Scholar
  30. 30.
    Rucinska R, Sobkowiak R, Gwozdz E (2004) Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol Biol Lett 9:519–528PubMedGoogle Scholar
  31. 31.
    Hartwig A, Schlepegrell R, Beyersmann R (1990) Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mutat Res 241:75–82PubMedCrossRefGoogle Scholar
  32. 32.
    Heddle J (1991) Implications for genetic toxicology of the chromosomal breakage syndromes. Mutat Res 247:221–229PubMedGoogle Scholar
  33. 33.
    Centeno J (2001) The diversity of trace elements and toxic metal ions in environmental health and human diseases: essentiality, toxicity and carcinogenesis. Division of Biophysical Toxicology. Dept. of Environmental and Toxicologic Pathology. Institute of Pathology, Washington, DC, pp. 2306–6000Google Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Ingrid Carruyo
    • 1
    • 2
    Email author
  • Yusmary Fernández
    • 1
  • Letty Marcano
    • 1
  • Xiomara Montiel
    • 1
  • Zaida Torrealba
    • 1
  1. 1.Departamento de Biología, Facultad Experimental de CienciasUniversidad del ZuliaMaracaiboVenezuela
  2. 2.Urbanización Maracaibo, AV 12 A N° 66-66MaracaiboVenezuela

Personalised recommendations