Biological Trace Element Research

, Volume 123, Issue 1–3, pp 261–269 | Cite as

Ceruloplasmin, an Indicator of Copper Status

  • Miguel ArredondoEmail author
  • Mauricio González
  • Manuel Olivares
  • Fernando Pizarro
  • Magdalena Araya


For clinical purposes, the non-ceruloplasmin copper fraction is routinely derived on the basis that ceruloplasmin binds six Cu atoms. However, this approach is limited because the actual ceruloplasmin copper binding is unclear. We performed direct measurement of the total serum copper and ceruloplasmin in 790 healthy individuals. We used an immunoprecipitation technique to separate ceruloplasmin and determined Cu content. With these values, we calculated the Cu/ceruloplasmin (Cp) ratio and thus generated data to support or discard the theoretical calculation of the non-ceruloplasmin fraction. Average of serum Cu and Cp levels were 18.4 ± 4.4 μmol/l and 390 ± 100 mg/l, respectively. The immunoprecipitation procedure allowed us to calculate a Cu/Cp ratio of 5.8, respectively, which supports the methodology of calculation that assigns a mean of six copper atoms to each ceruloplasmin molecule. With these values, we calculated that, in apparently normal adults, the non-ceruloplasmin copper (NCPC) fraction is lower than 1.3 μmol/l of Cu. In this report, we examine the Cp/Cu ratio by using Cp immunoprecipitation procedure. Our in vitro and in vivo studies indicate that, as a mean, there are 5.8 atoms of Cu per Cp molecule and that <1.3 μmol/l of Cu would correspond to the NCPC.


Ceruloplasmin Copper Non-ceruloplasmin copper 







non-ceruloplasmin copper



This work was supported by Corporación Chilena del Cobre (Cochilco), International Copper Association (ICA, NY, USA), Corporación para Apoyo de la Investigación Científica en Nutrición (CINUT) and Fondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) 1040979 from M. Araya, in the form of unrestricted grant.


  1. 1.
    Chelly J, Tümer Z, Tønneson T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3:14–19PubMedCrossRefGoogle Scholar
  2. 2.
    Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D, Glover TW (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 3:20–25PubMedCrossRefGoogle Scholar
  3. 3.
    Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13PubMedCrossRefGoogle Scholar
  4. 4.
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337PubMedCrossRefGoogle Scholar
  5. 5.
    Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350PubMedCrossRefGoogle Scholar
  6. 6.
    Yamaguchi Y, Heiny ME, Gitlin JD (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 197:271–277PubMedCrossRefGoogle Scholar
  7. 7.
    Araya M, Olivares M, Pizarro F, González M, Speisky H, Uauy R (2003) Copper exposure and potential biomarkers of copper metabolism. Biometals 16:199–204PubMedCrossRefGoogle Scholar
  8. 8.
    Sato M, Gitlin JD (1991) Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J Biol Chem 266:5128–5134PubMedGoogle Scholar
  9. 9.
    Gitlin JD, Schroeder JJ, Lee-Ambrose LM, Cousins RJ (1992) Mechanisms of ceruloplasmin biosynthesis in normal and copper-deficient rat. Biochem J 282:835–839PubMedGoogle Scholar
  10. 10.
    Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:S836–S841Google Scholar
  11. 11.
    Calabrese L, Carbonaro M, Musci G (1988) Chicken ceruloplasmin. Evidence in support of a trinuclear cluster involving type 2 and 3 copper centers. J Biol Chem 263:6480–6483PubMedGoogle Scholar
  12. 12.
    Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 96:10812–10817PubMedCrossRefGoogle Scholar
  13. 13.
    Bielli P, Bellenchi GC, Calabrese L (2001) Site-directed mutagenesis of human ceruloplasmin: production of a proteolytically stable protein and structure-activity relationships of type 1 sites. J Biol Chem 276:2678–2685PubMedCrossRefGoogle Scholar
  14. 14.
    Hellman, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–46638PubMedCrossRefGoogle Scholar
  15. 15.
    Zaitsev VN, Zaitseva I, Papiz M, Lindley PF (1999) An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. J Biol Inorg Chem 4:579–587PubMedCrossRefGoogle Scholar
  16. 16.
    Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, Vernieri F, Rossi L, Baldassini M, Rossini P (2005) Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology 64:1040–1046PubMedGoogle Scholar
  17. 17.
    Muller T, van de Sluis B, Mulle W, Pearson P, Wijmenga C (1999) Non-Indian childhood cirrhosis. Eur J Med Res 4:293–297PubMedGoogle Scholar
  18. 18.
    International Anemia Consultative Group (INACG) (1985)Measurement of iron status: a report of the International Anemia Consultative Group. The Nutrition Foundation, Washington, DC, pp. 1–49Google Scholar
  19. 19.
    Harlow E, Lane D (1999) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USAGoogle Scholar
  20. 20.
    Celis JE, Lauridsen JB, Basse B (1994) Determination of antibody specificity by western blotting and immunoprecipitation. In: Celis JE (ed) Cell Biology. A laboratory handbook, Cap. 2. Academic Press, San Diego, CA, USA, pp 305–314Google Scholar
  21. 21.
    Tapia L, Gonzalez-Aguero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, Gonzalez M (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624PubMedCrossRefGoogle Scholar
  22. 22.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  23. 23.
    Neumann PZ, Sass-Kortsak A (1967) State of copper in human serum: evidence for amino acid-bound fraction. J Clin Invest 46:646–658PubMedGoogle Scholar
  24. 24.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:S797–S811Google Scholar
  25. 25.
    Olivares M, Pizarro F, Speishy H, Lonnerdal B, Uauy R (1998) Copper in infant nutrition; safety of World Health Organization provisional guideline value of copper content of drinking water. J Pediatr Gastroenterol Nutr 26:251–257PubMedCrossRefGoogle Scholar
  26. 26.
    Olivares M, Araya M, Uauy R (2000) Copper homeostasis in infant nutrition: deficit and excess. J Pediatr Gastroenterol Nutr 31:102–111PubMedCrossRefGoogle Scholar
  27. 27.
    Eife R, Weiss M, Muller-Hocker M, Lang T, Barros V, Sigmund B, Thanner F, Welling P, Lange H, Wolf W, Rodeck B, Kittel J, Schramel P, Reiter K (1999) Chronic poisoning by copper in tap water: II. Copper intoxications with predominantly systemic symptoms. Eur J Med Res 4:224–228PubMedGoogle Scholar
  28. 28.
    Twomey P, Viljoen A, House I, Reynols T, Wierzbicki A (2005) Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin Chem 51:1558–1559PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Miguel Arredondo
    • 1
    Email author
  • Mauricio González
    • 2
  • Manuel Olivares
    • 1
  • Fernando Pizarro
    • 1
  • Magdalena Araya
    • 1
  1. 1.Micronutrient Laboratory, Nutrition and Food Technology Institute (INTA)University of ChileMaculChile
  2. 2.Bioinformatic and Genetic Expression Laboratory, Nutrition and Food Technology Institute (INTA)University of ChileMaculChile

Personalised recommendations