Biological Trace Element Research

, Volume 120, Issue 1–3, pp 92–101

Acquisition of Visuomotor Abilities and Intellectual Quotient in Children Aged 4–10 Years: Relationship with Micronutrient Nutritional Status

  • Horacio F. González
  • Agustina Malpeli
  • Graciela Etchegoyen
  • Lucrecia Lucero
  • Florencia Romero
  • Carolina Lagunas
  • Gustavo Lailhacar
  • Manuel Olivares
  • Ricardo Uauy
Article

Abstract

Lethargy, poor attention, and the high rate and severity of infections in malnourished children affect their educational achievement. We therefore studied the association between visuomotor abilities and intelligence quotient (IQ) and their relationship with iron, zinc, and copper. A cross-sectional study was carried out on a sample of 89 healthy children (age range, 4–10 years). Evaluations of visuomotor ability and IQ were performed with the Developmental Test of Visual Motor Integration (VMI) and the Scale for Measurement of Intelligence for children aged 3–18 years, respectively. Nutritional status was assessed using anthropometry and biochemical assessments, which included serum ferritin, zinc and copper levels, and Hb. The sample was classified as having low or normal VMI scores: 47 children (52.8%, mean age 7 ± 1.5 years) had low VMI, and 42 (47.2%, mean age 7 ± 2.06 years) had normal VMI. There were no statistically significant differences in socioeconomic and cultural condition between both groups. We found significantly higher serum copper and ferritin levels in normal as compared to low VMI, but we did not find any differences with zinc. IQ was significantly higher in normal vs low VMI children. The fact that children with abnormal VMI presented low mean serum copper and ferritin concentrations could indicate that copper and iron deficiencies in this sample could be related with visuomotor abilities.

Keywords

Cognitive development Neuromotor abilities Nutrition Copper Zinc Iron 

References

  1. 1.
    Keen CL, Gershwin ME (1999) Zinc deficiency and immune function. In: Olson RE (ed) Annual review of nutrition. Annual Reviews, Palo Alto, pp 415–431Google Scholar
  2. 2.
    Pellegrini Braga J, Kerbauy J, Fisberg M (1995) Zinc, copper and iron and their interrelations in the growth of sickle cell patients. Arch Latinoam Nutr 45:198–203PubMedGoogle Scholar
  3. 3.
    Stanbury JB (1994) The damaged brain of iodine deficiency. Cognizant Communication, New YorkGoogle Scholar
  4. 4.
    Rivera JA, Hotz C, Gonzalez Cossio T, Neufeld L, Garcia Guerra A (2003) The effect of micronutrient deficiencies on child growth: a review of results from community-based supplementation trials. J Nutr 133:4010S–4020SPubMedGoogle Scholar
  5. 5.
    Weimberg T (1982) Behavioural and phisiology effect in iron deficiency in the rat. In: Pollitt E, Leíble RL (eds) Iron deficiency. Brain biochemistry and behaviour. Raven, New York, pp 92– 123Google Scholar
  6. 6.
    Algarin C, Peirano P, Garrido M, Pizarro F, Lozoff B (2003) Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res 53:217–223PubMedCrossRefGoogle Scholar
  7. 7.
    Black MM (2003) The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr 133:1473S–1476SPubMedGoogle Scholar
  8. 8.
    Golub MS, Takeuchi PT, Keen CL, Gershwin ME, Hendrickx AG, Lonnerdal B (1994) Modulation of behavioral performance of prepuberal monkeys by moderate dietary zinc deprivation. Am J Clin Nutr 60:238–243PubMedGoogle Scholar
  9. 9.
    Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc containing neuron. J Nutr 130:1471S–1483SPubMedGoogle Scholar
  10. 10.
    Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959SPubMedGoogle Scholar
  11. 11.
    Araya M, Koletzko B, Uauy R (2003) Copper deficiency and excess in infancy: developing a research agenda. J Pediatr Gastroenterol Nutr 37:422–429PubMedCrossRefGoogle Scholar
  12. 12.
    Lozoff B, Brittenham GM, Viteri FE, Wolf AW, Urrutia JJ (1982) The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. J Pediatr 100:351–357PubMedCrossRefGoogle Scholar
  13. 13.
    Lozoff B, Brittenham GM, Wolf AW, McClish DK, Khunert PM, Jimenez E et al (1987) Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 79:981–995PubMedGoogle Scholar
  14. 14.
    Walter T, De Andraca I, Chadud P, Perales CG (1989) Iron deficiency anemia: adverse effects on infant psychomotor development. Pediatrics 84:7–17PubMedGoogle Scholar
  15. 15.
    Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P (2003) Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 112:846–854PubMedGoogle Scholar
  16. 16.
    Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera FA, Icaza G (2001) Effect of zinc supplementation on development and growth of Chilean infants. J Pediatr 138:229–235PubMedCrossRefGoogle Scholar
  17. 17.
    Whaley SE, Sigman M, Neumann C, Bwibo N, Guthrie D, Weiss RE et al (2003) The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr 133:3965S–3971SPubMedGoogle Scholar
  18. 18.
    Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105:E51PubMedCrossRefGoogle Scholar
  19. 19.
    Lozoff B, Jimenez E, Wolf AW (1991) Long-term developmental outcome of infants with iron deficiency. N Engl J Med 325:687–694PubMedCrossRefGoogle Scholar
  20. 20.
    Case-Smith J (1995) The relationships among sensorimotor components, fine motor skill, and functional performance in preschool children. Am J Occup Ther 49:645–652PubMedGoogle Scholar
  21. 21.
    Beery KE (1989) The VMI Developmental test of visual-motor integration, administration, scoring, and teaching manual, 3rd revision. Modern Curriculum, TorontoGoogle Scholar
  22. 22.
    Armstrong BB, Knopf KF (1982) Comparison of the Bender-Gestalt and revised Developmental Test of Visual-Motor Integration. Percept Mot Skills 55:164–166PubMedGoogle Scholar
  23. 23.
    Aylward EH, Schmidt S (1986) An examination of three tests of visual motor integration. J Learn Disab 19:328–330Google Scholar
  24. 24.
    Breen MJ (1982) Comparison of educationally handicapped students scores on the Revised Developmental Test of Visual-Motor Integration and Bender–Gestalt. Percept Mot Skills 54:1227–1230PubMedGoogle Scholar
  25. 25.
    Breen MJ, Carlson M, Lehman J (1985) The Revised Developmental Test of Visual Motor Integration: its relation to the VMI, WISC-R, and Bender Gestalt for a group of elementary aged learning disabled students. J Learn Disab 18:136–138CrossRefGoogle Scholar
  26. 26.
    Terman L, Merrill M (1975) Medida de la inteligencia. Espasa-Calpe, MadridGoogle Scholar
  27. 27.
    Alonso Tapia J (1992) Evaluación de la inteligencia desde el enfoque de Binet-Terman- Weschler. In: Fernández-Ballesteros R (ed) Introducción a la evaluación psicológica. Pirámide, MadridGoogle Scholar
  28. 28.
    INDEC (1984) Anuario Estadístico, La pobreza en la Argentina, Buenos AiresGoogle Scholar
  29. 29.
    Romero F, Lucero L (2003) Relación entre habilidades visuomotoras y habilidad para la copia de letras, Tesis de Licenciatura de Terapia Ocupacional. Facultad de Ciencias de la Salud y Servicio Social, Universidad Nacional de Mar del Plata, ArgentinaGoogle Scholar
  30. 30.
    Comité Nacional de Crecimiento y Desarrollo (2001) Guías para la Evaluación del Crecimiento, 2nd edn. Sociedad Argentina de Pediatría, Buenos AiresGoogle Scholar
  31. 31.
    CDC–National Center for Health Statistics (2000) CDC Growth Charts. United States. http://www.cdc.gov/growthcharts
  32. 32.
    Centers for Disease Control and Prevention (1998) Recommendations to prevent and control iron deficiency in the United States. MMWR Recomm Rep 47(RR3):1–29Google Scholar
  33. 33.
    Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:4150–4157PubMedGoogle Scholar
  34. 34.
    Castillo-Durán C, Fisberg M, Valenzuela A, Egaña JI, Uauy R (1983) Controlled trial of copper supplementation during the recovery from marasmus. Am J Clin Nutr 37:898–903PubMedGoogle Scholar
  35. 35.
    Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academies, Washington, DCGoogle Scholar
  36. 36.
    Food and Nutrition Board, Institute of Medicine (2000) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies, Washington, DCGoogle Scholar
  37. 37.
    Di Iorio S, Urrutia MI, Rodrigo A (1998) Desarrollo psicológico, nutrición y pobreza. Arch Arg Ped 96:219Google Scholar
  38. 38.
    Black MM, Baqui AH, Zaman K, Ake Persson L, El Arifeen S, Le K et al (2004) Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80:903–910PubMedGoogle Scholar
  39. 39.
    Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci U S A 103:14919–14924PubMedCrossRefGoogle Scholar
  40. 40.
    Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33:81–90PubMedCrossRefGoogle Scholar
  41. 41.
    Cordano A (1998) Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr 67:1012S–1016SPubMedGoogle Scholar
  42. 42.
    Grantham-McGregor SM, Ani CC (1999) The role of micronutrients in psychomotor and cognitive development. Br Med Bull 55:511–527PubMedCrossRefGoogle Scholar
  43. 43.
    Faber M, Kvalsvig JD, Lombard CJ, Benade AJ (2005) Effect of a fortified maize-meal porridge on anemia, micronutrient status, and motor development of infants. Am J Clin Nutr 82:1032–1039PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Horacio F. González
    • 1
    • 4
  • Agustina Malpeli
    • 1
  • Graciela Etchegoyen
    • 2
  • Lucrecia Lucero
    • 1
  • Florencia Romero
    • 1
  • Carolina Lagunas
    • 1
  • Gustavo Lailhacar
    • 1
  • Manuel Olivares
    • 3
  • Ricardo Uauy
    • 3
  1. 1.Instituto de Desarrollo e Investigaciones Pediátricas (IDIP)Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Hospital de Niños “Sor María Ludovica”La PlataArgentina
  2. 2.Cátedra de EpidemiologíaFacultad de Ciencias Médicas UNLPLa PlataArgentina
  3. 3.Instituto de Nutrición y Tecnología de los Alimentos (INTA)Universidad de ChileSantiagoChile
  4. 4.IDIP – Instituto de Desarrollo e Investigaciones PediátricasHospital de Niños “Sor María Ludovica” de La PlataLa PlataArgentina

Personalised recommendations